Skip to main content
Log in

Enhancing energy storage performance in BaTiO3 ceramics via Mg and La co-doping strategy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work employs the conventional solid-state reaction method to synthesize Ba0.92La0.08Ti0.95Mg0.05O3 (BLMT5) ceramics. The goal is to investigate how defect dipoles affect the ability of lead-free ferroelectric ceramics made from BaTiO3 to store energy. An extensive examination was performed on the crystal structure, dielectric properties, and energy storage capacity. The analysis found that the polarization hysteresis loops of BLMT5 ceramics had a significant maximum Pm of around 30 µC/cm3 and a low remanent polarization Pr of around 1.80 µC/cm3. In an electric field of 147 kV/cm, defect dipoles significantly increased the recovered energy density, reaching about 1.55 J/cm3. This also increased energy efficiency by over 91%. Furthermore, the BLMT demonstrates exceptional suitability for thermal stability since its performance remained unaffected at the temperatures under examination. The findings of this research indicate that these materials have great potential as suitable contenders for high-power energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used in this article are confidential and analyzed in this manuscript.

References

  1. A.L. Shaqsi, K. Sopian, A. Al-Hinai, Energy Rep. 6, 288–306 (2020)

    Article  Google Scholar 

  2. D. Çelik, M.E. Meral, M. Waseem, Electric Power Syst. Res. 211, 108251 (2022)

    Article  Google Scholar 

  3. T. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari, N. Prabaharan, Energy Strat Rev. 43, 100939 (2022)

    Article  Google Scholar 

  4. S. Mishra, G. Saini, S. Saha, A. Chauhan, A. Kumar, S. Maity, Sustain. Energy Technol. Assess. 52, 102246 (2022)

    Google Scholar 

  5. A.A. Kebede, T. Kalogiannis, J. Van Mierlo, M. Berecibar, Renew. Sustain. Energy Rev. 159, 112213 (2022)

    Article  CAS  Google Scholar 

  6. M. Amir, R.G. Deshmukh, H.M. Khalid, Z. Said, A. Raza, S. Muyeen, A. Nizami, R.M. Elavarasan, R. Saidur, K.J. Sopian, Energy Storage 72, 108694 (2023)

    Article  Google Scholar 

  7. F.M.N.U. Khan, M.G. Rasul, A. Sayem, N.K.J. Mandal, Energy Storage 71, 108033 (2023)

    Article  Google Scholar 

  8. J. Sun, B. Luo, H. Li, Adv. Energy Sustain. Res. 3(6), 2100191 (2022)

    Article  Google Scholar 

  9. P. Himadri Reddy, J. Amalraj, S. Ranganatha, S.S. Patil, S. Chandrasekaran, Synth. Met. 298, 117447 (2023)

    Article  CAS  Google Scholar 

  10. A. Dutta, S. Mitra, M. Basak, T. Banerjee, J. Energy Storage 5(1), e339 (2023)

    Article  CAS  Google Scholar 

  11. R. Gupta, A. Kumar, A. Biswas, R. Singh, A. Gehlot, S.V. Akram, A.S.J. Verma, Energy Storage 55, 105591 (2022)

    Article  Google Scholar 

  12. X. Han, Y. Ji, Y. Yang, Adv. Funct. Mater. 32(14), 2109625 (2022)

    Article  CAS  Google Scholar 

  13. A. Jayakrishnan, J. Silva, K. Kamakshi, D. Dastan, V. Annapureddy, M. Pereira, K. Sekhar, Prog. Mater. Sci. 132, 101046 (2023)

    Article  CAS  Google Scholar 

  14. M.H. Bagheri, A.A. Khan, S. Shahzadi, M.M. Rana, M.S. Hasan, D. Ban, Nano Energy 120, 109101 (2024)

    Article  CAS  Google Scholar 

  15. K.H. Alharbi, C. Ayari, W. Alharbi, A.A. Alotaibi, A. Othmani, M.H.J. Mrad, Energy Storage 70, 107984 (2023)

    Article  Google Scholar 

  16. H. Qin, J. Song, M. Liu, Y. Zhang, S. Qin, H. Chen, K. Shen, S. Wang, Q. Li, Q. Yang, C.J. Xiong, Chem. Eng. 461, 142068 (2023)

    Article  CAS  Google Scholar 

  17. H. Nie, Y. Jiao, D. Jin, X. Wang, Y. Zheng, G. Liu, L. Jin, T. Wang, W. Gong, Y. Yan, Ceram. Int. 48(21), 31223–31232 (2022)

    Article  CAS  Google Scholar 

  18. Y. Chen, Y. Huang, Y. Zuo, H. Wang, K. Liu, B. Fan, Q. Zhang, G. Zhang, S. Jiang, M. Shen, J. Eur. Ceram. Soc. 42(15), 6985–6996 (2022)

    Article  Google Scholar 

  19. M.S. Alkathy, S. Pattipaka, M.K. Gatasheh, H.A. Kassim, M.S. Daoud, J.A. Eiras, J. Asian Ceram. Soc. 11, 491–503 (2023)

    Article  Google Scholar 

  20. A. Kumar, G. Lee, A. Thakre, D.R. Patil, G. Han, J. Ryu, J. Korean Ceram. Soc. 60, 979–989 (2023)

    Article  CAS  Google Scholar 

  21. A. Kumar, G. Lee, Y.G. Chae, A. Thakre, H.S. Choi, G.H. Nam, J. Ryu, Ceram. Int. 47(22), 31590–31596 (2021)

    Article  CAS  Google Scholar 

  22. A. Kumar, S.H. Kim, A. Thakre, G. Lee, Y.G. Chae, J. Ryu, J Therm Spray Tech 30, 591–602 (2021)

    Article  CAS  Google Scholar 

  23. A. Kumar, K.C.J. Raju, J. Ryu, Appl. Phys. A 126, 175 (2020)

    Article  CAS  Google Scholar 

  24. A. Kumar, S.H. Kim, M. Peddigari, D.H. Jeong, G.T. Hwang, J. Ryu, Electron. Mater. Lett. 15, 323–330 (2019)

    Article  CAS  Google Scholar 

  25. P. Singhal, A. Upadhyay, R. Sharma, S. Rattan, Carbon-Based Polymer Composites as Dielectric Materials for Energy Storage, in Dielectric Materials for Energy Storage and Energy Harvesting Devices. ed. by S. Rajput, S. Parida, A. Sharma (River Publishers, New York, 2023), pp.81–111

    Chapter  Google Scholar 

  26. R. Liu, Z. Chen, Z. Lu, X. Wang, Ceram. Int. 48(2), 2377–2384 (2022)

    Article  CAS  Google Scholar 

  27. J. Lv, S. Song, Y. Jiao, Z. Yang, Y. Zhang, Y. Fan, C. Song, G. Liu, Ceram. Int. 48(1), 22–31 (2022)

    Article  CAS  Google Scholar 

  28. D. Mondal, M.K. Adak, J. Khatun, P. Singh, A. Das, S.P. Gumfekar, D. Dhak, J. Energy Storage. 76, 109846 (2024)

    Article  Google Scholar 

  29. Z. Zhao, Y. Lv, Y. Dai, S. Zhang, Acta Mater. 200, 35–41 (2023)

    Article  Google Scholar 

  30. A. Klein, K. Albe, N. Bein et al., J. Electroceram. (2023). https://doi.org/10.1007/s10832-023-00324-y

    Article  Google Scholar 

  31. X. Ren, L. Jin, Z. Peng, B. Chen, X. Qiao, D. Wu, G. Li, H. Du, Z. Yang, X.J. Chao, Chem. Eng. 390, 124566 (2020)

    Article  CAS  Google Scholar 

  32. V. Khade, M. Wuppulluri, J. Adv. Dielectr. 2340001, 32 (2023)

    Google Scholar 

  33. A. Kumari, K. Kumari, F. Ahmed, A. Alshoaibi, P. Alvi, S. Dalela, M.M. Ahmad, R.N. Aljawfi, P. Dua, A. Vij, S. Kumar, Vacuum 184, 109872 (2021)

    Article  CAS  Google Scholar 

  34. Y. Zhang, A. Li, G. Zhang, Y. Zheng, A. Zheng, G. Luo, Tu. Rong, Yi. Sun, J. Zhang, Q. Shen, ACS Sustain. Chem. Eng. 9, 2930–2937 (2022)

    Article  Google Scholar 

  35. S. Wang, X. Li, J. Wang, X. Wu, L. Li, J. Zhang, Y. Wang, J. Am. Ceram. Soc. 106(3), 1970–1980 (2023)

    Article  CAS  Google Scholar 

  36. Y.X. Liu, H.C. Thong, Y.Y.S. Cheng, J.W. Li, Ke. Wang, J. Appl. Phys. 2, 129 (2021)

    Article  Google Scholar 

  37. H. Liu, L. Fan, S. Sun, K. Lin, Y. Ren, X. Tan, X. Xing, J. Chen, Acta Mater. 184, 41–49 (2020)

    Article  CAS  Google Scholar 

  38. G.F. Nataf, M. Guennou, J.M. Gregg, D. Meier, J. Hlinka, E.K.H. Salje, J. Kreisel, Nat. Rev. Phys. 2(11), 634–648 (2020)

    Article  CAS  Google Scholar 

  39. R. Kumar, I. Singh, R. Meena, K. Asokan, B. Birajdar, S. Patnaik, Mater. Res. Bull. 123, 110694 (2020)

    Article  CAS  Google Scholar 

  40. M.S. Alam, I. Kagomiya, K.I. Kakimoto, J. Mater. Sci. Mater. Electron. 34, 363 (2023)

    Article  CAS  Google Scholar 

  41. M.K. Gatasheh, M.S. Daoud, H. Kassim, Materials 16(24), 7528 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Tyunina, O. Pacherova, T. Kocourek et al., Sci. Rep. 11, 15247 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R.D. Shannon, Acta Crystallogr. Sect. A Cryst Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–766 (1976)

    Article  Google Scholar 

  44. V. Trotsenko, A. Lahmar, N. Lyanguzov, M. El Marssi, V. Torgashev, Superlattices Microstruct. 127, 100–108 (2019)

    Article  CAS  Google Scholar 

  45. P. Xue, Y. Hu, W. Xia, H. Wu, X. Zhu, J. Alloys Compd. 695, 2870–2877 (2017)

    Article  CAS  Google Scholar 

  46. M.S. Alkathy, M.H. Lente, J. Eiras, Mater. Chem. Phys. 257, 123791 (2021)

    Article  CAS  Google Scholar 

  47. M.L. Moreira, E.C. Paris, G.S. Do Nascimento, V.M. Longo, J.R. Sambrano, V.R. Mastelaro, M.I. Bernardi, J. Andrés, J.A. Varela, E. Longo, Acta Mater. 57(17), 5174–5185 (2009)

    Article  CAS  Google Scholar 

  48. E. Silva Jr., F.A. La Porta, M.S. Liu, J. Andrés, J.A. Varela, E. Longo, Dalton Trans. 44(7), 3159–3175 (2015)

    Article  Google Scholar 

  49. T. Mondal, S. Das, T. Badapanda, T. Sinha, P. Sarun, Phys. B: Condens. Matter. 508, 124–135 (2017)

    Article  CAS  Google Scholar 

  50. D.S. Nakonieczny, F. Kern, L. Dufner, A. Dubiel, M. Antonowicz, K. Matus, Materials 14(21), 6651 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Udomporn, S. Ananta, Mater. Lett. 58, 1154–1159 (2004)

    Article  CAS  Google Scholar 

  52. M.N. Siddique, A. Ahmed, P. Tripathi, J. Alloys Compd. 735, 516–529 (2018)

    Article  CAS  Google Scholar 

  53. B. Quan, X. Liang, G. Ji, Y. Cheng, W. Liu, J. Ma, Y. Zhang, D. Li, G. Xu, J. Alloys Compd. 728, 1065–1075 (2017)

    Article  CAS  Google Scholar 

  54. V. Sundar, R.E. Newnham, Ferroelectrics 135, 431–446 (1992)

    Article  CAS  Google Scholar 

  55. R. Bhowmik, M. Aswathi, Compos. B Eng. 160, 457–470 (2019)

    Article  CAS  Google Scholar 

  56. M.S. Alkathy, K.K. Bokinala, K.C. James Raju, J. Mater. Sci. Mater. Electron. 27, 3175–3181 (2016)

    Article  CAS  Google Scholar 

  57. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109(2–3), 475–481 (2008)

    Article  CAS  Google Scholar 

  58. Z. Raddaoui, S. El Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, RSC Adv. 9, 2412–2425 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. S. Rout, E. Sinha, S. Panigrahi, Mater. Chem. Phys. 101(2–3), 428–432 (2007)

    Article  CAS  Google Scholar 

  60. I. Calisir, D.A. Hall, J. Mater. Chem. C. 6, 134–146 (2018)

    Article  CAS  Google Scholar 

  61. M.S. Alkathy, R. Gayam, K.C. James Raju, J. Mater. Sci. Mater. Electron. 28, 1684–1694 (2017)

    Article  CAS  Google Scholar 

  62. V.R. Mudinepalli, L. Feng, W.C. Lin, B.S. Murty, J. Adv. Ceram. 4, 46–53 (2015)

    Article  CAS  Google Scholar 

  63. K. Tsuji, A. Ndayishimiye, S. Lowum, R. Floyd, K. Wang, M. Wetherington, J. Maria, C.A. Randall, J. Eur. Ceram. Soc. 40(4), 1280–1284 (2020)

    Article  CAS  Google Scholar 

  64. W. Liu, J. Gao, Y. Zhao, S.J. Li, Alloy. Compd. 843, 155938 (2020)

    Article  CAS  Google Scholar 

  65. He. Qi, A. Xie, Ao. Tian, R. Zuo, Adv. Energy Mater. 10, 1903338 (2020)

    Article  CAS  Google Scholar 

  66. J. Sun, G. Yan, B. Fang, X. Zhao, S. Zhang, X. Lu, J. Ding, J Energy Storage 78, 110007 (2024)

    Article  Google Scholar 

  67. M.S. Alkathy, S. Pattipaka, M.K. Gatasheh, F.L. Zabotto, J.A. Eiras, J. Inorg. Organomet. Polym. Mater. 2023, 1–15 (2023)

    Google Scholar 

  68. M. Alkathy, A. Rahaman, V.R. Mastelaro, F. Zabotto, F.P. Milton, J.J. Eiras, Alloy. Compd. 934, 167887 (2023)

    Article  CAS  Google Scholar 

  69. M.S. Alkathy, A. Rahaman, V.R. Mastelaro, F.P. Milton, F.L. Zabotto, M.H. Lente, A. Strabello, J. Eiras, Mater. Chem. Phys. 294, 127032 (2023)

    Article  CAS  Google Scholar 

  70. X. Ren, Nat. Mater. 3, 91–94 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. J. Zha, J. Liu, Y. Yang, X. Lu, X. Hu, S. Yan, Z. Wu, M. Zhou, F. Huang, X. Ying, Chem. Eng. J. 486, 150441 (2024)

    Article  CAS  Google Scholar 

  72. C. Wang, C. Liang, W. Cao, H. Zhao, C. Wang, Cream. Int. 49(9), 13330–13338 (2023)

    Article  CAS  Google Scholar 

  73. M. Ur Rehman, A. Manan, M.A. Khan, S.U. Khan, Mater. Sci. Eng. B 288, 116190 (2023)

    Article  CAS  Google Scholar 

  74. Y.J. Wu, Y.H. Huang, N. Wang, J. Li, M.S. Fu, X.M. Chen, J. Eur. Ceram. Soc. 37, 2099–2104 (2017)

    Article  CAS  Google Scholar 

  75. H. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, J. Alloy. Compd. 720, 116–125 (2017)

    Article  CAS  Google Scholar 

  76. Xi. Dong, H. Chen, M. Wei, W. Kaituo, J. Zhang, J. Alloy. Compd. 744, 721–727 (2018)

    Article  CAS  Google Scholar 

  77. Z. Dai, J. Xie, Z. Chen, S. Zhou, J. Liu, W. Liu, Z. Xi, X. Chem, Eng. J. 410, 128341 (2021)

    CAS  Google Scholar 

  78. X. Lin, X. Zhao, L. Zhou, M. Zhao, Y. Lin, Y. Yao, B. Liang, T. Tao, S.G. Lu, J. Mater. Sci. Mater. Electron. 32, 11845–11856 (2021)

    Article  CAS  Google Scholar 

  79. G. Liu, Y. Li, B. Guo, M. Tang, Q. Li, J. Dong, L. Yu, K. Yu, Y. Yan, D. Wang, L. Zhang, Chem. Eng. J. 398, 125625 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the financial support of the Sao Paulo Research Foundation (FAPESP: Grant No. 2017/13769-1) and (FAPESP: Grant No. 2023/05716-6). Dr Mansor thanks the researchers supporting project number (RSP2024R393) at King Saud University in Riyadh, Saudi Arabia, for his financial support. Prof K.C James Raju acknowledges the funds received from the Institution of Eminence (IoE) program under sanction number UoH/IoE/RC1/RC1-20-013.

Funding

Funding was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant Nos. 2023/05716-6, 2017/13769-1), King Saud University (Grant No. RSP2024R393), University of Hyderabad (Grant No. UoH/IoE/RC1/RC1-20-013).

Author information

Authors and Affiliations

Authors

Contributions

MSA: Formal analysis, methodology, writing the original draft. MKG: Resources. FLZ: Investigator. HK: Formal analysis and writing of the original draft. Prof. JR and Prof. JE: Supervise, correct, and approve the final version.

Corresponding author

Correspondence to Mahmoud S. Alkathy.

Ethics declarations

Conflict of interest

The authors confirm no conflict of interest or competing interest in this work.

Research involving in human and animal participants

This article contains no studies with human participants or animals performed by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., Gatasheh, M.K., Zabotto, F.L. et al. Enhancing energy storage performance in BaTiO3 ceramics via Mg and La co-doping strategy. J Mater Sci: Mater Electron 35, 1027 (2024). https://doi.org/10.1007/s10854-024-12816-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12816-w

Navigation