Abstract
Novel computing technologies that imitate the principles of biological neural systems may serve low power consumption with significant cognitive and learning advantages. The development of memristors with non-volatile memory characteristics has opened up new applications in neuromorphic circuits and adaptive systems. However, conventional metal oxide memristor devices are generally based on oxygen vacancy or metal-ion conductive filament mechanisms that make it hard to realize the function of neuromorphic computing. Herein, we demonstrate that CrSBr nanosheet-based memristor exhibits high durability, low power consumption, and the capacity to achieve multiple reproducible resistance states, displaying resistive switching performance. Furthermore, we successfully simulated various synaptic behaviors, such as short-term/long-term plasticity, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP), revealing the capability of CrSBr memristors to flexibly meet the demands of complex neuromorphic computing applications. Our work makes CrSBr a promising candidate which is considered to be the behavior of an ideal synaptic biomimetic device in future computing systems.
Similar content being viewed by others
Data availability
The research data generated and analyzed during the current study are available from the corresponding author upon reasonable request.
References
W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM SIGARCH. 23(1), 20–24 (1995). https://doi.org/10.5555/3338075.3338086
X.B. Yan et al., A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 15(25), 1900107 (2019). https://doi.org/10.1002/smll.201900107
C.C. Zhang et al., Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem. Commun. 52(26), 4828–4831 (2016). https://doi.org/10.1039/c6cc00989a
Q.T. Wu et al., Full imitation of synaptic metaplasticity based on memristor devices. Nanoscale 10(13), 5875–5881 (2018). https://doi.org/10.1039/c8nr00222c
R. Wang et al., Bipolar analog memristors as artificial synapses for neuromorphic computing. Materials. 11(11), 2102 (2018). https://doi.org/10.3390/ma11112102
L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431(7010), 796–803 (2004). https://doi.org/10.1038/nature03010
G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). https://doi.org/10.1088/0957-4484/24/38/384010
J.J.S. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013). https://doi.org/10.1038/nnano.2012.240
D. Ielmini, H.S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2
J.J. Zhang et al., AgInSbTe memristor with gradual resistance tuning. Appl. Phys. Lett. 102(18), 3513 (2013). https://doi.org/10.1063/1.4804983
S.H. Pei, Z.H. Wang, J. Xia, Interlayer coupling: an additional degree of freedom in two-dimensional materials. ACS Nano 16(8), 11498–11503 (2022). https://doi.org/10.1021/acsnano.1c11498
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193
D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5(1), 5678 (2014). https://doi.org/10.1038/ncomms6678
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 16(2), 163–169 (2017). https://doi.org/10.1038/s41467-023-41688-7
A.A. Bessonov et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135
X.B. Yan et al., Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 15(24), 1901423 (2019). https://doi.org/10.1002/smll.201901423
M. Wang et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4
R.J. Xu et al., Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19(4), 2411–2417 (2019). https://doi.org/10.1021/acs.nanolett.8b05140
Q.A. Vu et al., A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29(44), 1703363 (2017). https://doi.org/10.1002/adma.201703363
L.F. Sun et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7(20), 1455 (2021). https://doi.org/10.1126/sciadv.abg1455
E.J. Telford et al., Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32(37), 2003240 (2020). https://doi.org/10.1002/adma.202003240
M. Kayyalha, J. Maassen, M. Lundstrom, L. Shi, Y.P. Chen, Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. J. Appl. Phys. 120(13), 134305 (2016). https://doi.org/10.1063/1.4963364
F. Wu, I. Gutiérrez-Lezama, S.A. López-Paz et al., Quasi-1D electronic transport in a 2D magnetic semiconductor. Adv. Mater. 34(16), 2109759 (2022). https://doi.org/10.1002/adma.202109759
A. Avsar, Highly anisotropic van der Waals magnetism. Nat. Mater. 21(7), 731–733 (2022). https://doi.org/10.1038/s41563-022-01299-x
X. Xu, X. Wang, P. Chang et al., Strong spin-phonon coupling in two-dimensional magnetic semiconductor CrSBr. J. Phys. Chem. C 126(25), 10574–10583 (2022). https://doi.org/10.1021/acs.jpcc.2c02742
N.P. Wilson, K. Lee, J. Cenker et al., Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20(12), 1657–1662 (2021). https://doi.org/10.1038/s41563-021-01070-8
C. Hou, X. Wang, Y. Sun et al., Magnetic-electronic coupling in the strained bilayer CrSBr. J. Phys. Chem. C 127(46), 22833–22841 (2023). https://doi.org/10.1021/acs.jpcc.3c06426
C. Ye et al., Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano 16(8), 11876–11883 (2022). https://doi.org/10.1021/acsnano.2c01151
W. Liu, X. Guo, J. Schwartz et al., A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals bulk magnet CrSBr. ACS Nano 16(10), 15917–15926 (2022). https://doi.org/10.1021/acsnano.2c02896
M.E. Ziebel, M.L. Feuer, J. Cox et al., CrSBr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 24(15), 4319–4329 (2024). https://doi.org/10.1021/acs.nanolett.4c00624
F. Moro, S. Ke, A.G. del Águila et al., Revealing 2D magnetism in a bulk CrSBr single crystal by electron spin resonance. Adv. Func. Mater. 32(45), 2207044 (2022). https://doi.org/10.1002/adfm.202207044
D.J. Rizzo, A.S. McLeod, C. Carnahan et al., Visualizing atomically layered magnetism in CrSBr. Adv. Mater. 34(27), 2201000 (2022). https://doi.org/10.1002/adma.202201000
H.H. Radamson, Graphene. Springer handbook of electronic and photonic materials. (2017). https://doi.org/10.1007/978-3-319-48933-9_48
M. Kolahdouz, B. Xu, A.F. Nasiri et al., Carbon-related materials: graphene and carbon nanotubes in semiconductor applications and design. Micromachines. 13(8), 1257 (2022). https://doi.org/10.3390/mi13081257
K. Torres et al., Probing defects and spin-phonon coupling in CrSBr via resonant raman scattering. Adv. Func. Mater. 33(12), 2211366 (2023). https://doi.org/10.1002/adfm.202211366
A. Pawbake, T. Pelini, N.P. Wilson et al., Raman scattering signatures of strong spin-phonon coupling in the bulk magnetic van der Waals material CrSBr. Phys. Rev. B 107(7), 075421 (2023). https://doi.org/10.1103/PhysRevB.107.075421
F. Moro et al., Revealing 2D magnetism in a bulk CrSBr single crystal by electron spin resonance. Adv. Func. Mater. 32(45), 2207044 (2022). https://doi.org/10.1002/adfm.202207044
K. Yang, G. Wang, L. Liu et al., Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr. Phys. Rev. B 104(14), 144416 (2021). https://doi.org/10.1103/PhysRevB.104.144416
F. Marques-Moros, C. Boix-Constant, S. Mañas-Valero, J. Canet-Ferrer, E. Coronado, Interplay between optical emission and magnetism in the van der waals magnetic semiconductor CrSBr in the two-dimensional limit. ACS Nano 17(14), 13224–13231 (2023). https://doi.org/10.1021/acsnano.3c00375
N.P. Wilson et al., Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20(12), 1657–1662 (2021). https://doi.org/10.1038/s41563-021-01070-8
D.H. Kwon et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010). https://doi.org/10.1038/nnano.2009.456
S. Kumar, J.P. Strachan, R.S.T. Williams, Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548(7667), 318–321 (2017). https://doi.org/10.1038/nature23307
H.H. Radamson, A. Hallén, I. Sychugov et al., Analytical methods and instruments for micro-and nanomaterials (Springer, Berlin, 2023)
M. Nikolka, K. Broch, J. Armitage et al., High-mobility, trap-free charge transport in conjugated polymer diodes. Nat. Commun. 10(1), 2122 (2019). https://doi.org/10.17863/CAM.36394
P.R. Emtage, W. Tantraporn, Schottky emission through thin insulating films. Phys. Rev. Lett. 8(7), 267 (1962). https://doi.org/10.1103/PhysRevLett.8.267
X. Yan et al., Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C. 5(9), 2259–2267 (2017). https://doi.org/10.1039/C6TC04261A
J.M. Zhou, N. Liu, L.Q. Zhu, Y. Shi, Q. Wan, Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors. IEEE Electron Device Lett. 36(2), 198–200 (2014). https://doi.org/10.1109/led.2014.2381631
Q.F. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x
J.Q. Yang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32(52), 2003610 (2020). https://doi.org/10.1002/adma.202003610
R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64(1), 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
Y. Li et al., Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3(1), 1619 (2013). https://doi.org/10.1038/srep01619
X.B. Yan et al., Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Func. Mater. 28(1), 1705320 (2018). https://doi.org/10.1002/adfm.201705320
G.L. Ma, M.H. Man, Y.Q. Zhang, S.H. Liu, A fast homeostatic inhibitory plasticity rule circuit with a memristive synapse. Electronics 12(3), 490 (2023). https://doi.org/10.3390/electronics12030490
M. Prezioso et al., Training andoperation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
C. Shi et al., Flexible and insoluble artificial synapses based on chemical cross-linked wool keratin. Adv. Func. Mater. 30(45), 2002882 (2020). https://doi.org/10.1002/adfm.202002882
M. Kim et al., Filamentary and interface-type memristors based on tantalum oxide for energy-efficient neuromorphic hardware. ACS Appl. Mater. Interfaces 14(39), 44561–44571 (2022). https://doi.org/10.1021/acsami.2c12296
J. Shen et al., Low consumption two-terminal artificial synapse based on transfer-free single-crystal MoS2 memristor. Nanotechnology 31(26), 265202 (2020). https://doi.org/10.1088/1361-6528/ab82d6
M. Kumar, D.K. Ban, S.M. Kim, J. Kim, C.P. Wong, Vertically aligned WS2 layers for high-performing memristors and artificial synapses. Adv. Electron. Mater. 5(10), 1900467 (2019). https://doi.org/10.1002/aelm.201900467
X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
S. Luo et al., A synaptic memristor based on two-dimensional layered WSe2 nanosheets with short- and long-term plasticity. Nanoscale 13(13), 6654–6660 (2021). https://doi.org/10.1039/d0nr08725d
Funding
This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA1600800), the National Natural Science Foundation of China (Nos. 11975234, 12105286, 12275271, and 12305369), Major Science and Technology Project of Anhui Province (No. 202103a05020025), the Key Program of Research and Development of Hefei Science Center CAS (No. 2021HSC-KPRD002), the Users with Excellence Program of Hefei Science Center CAS (Nos. 2020HSC-CIP013, 2021HSC-UE002), Collaborative Innovation Program of Hefei Science Center CAS (No. 2022HSC-CIP028), the Fundamental Research Funds for the Central Universities (No. WK2310000103), and partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
Author information
Authors and Affiliations
Contributions
C.L. and W.Y. conceived the experiments and supervised the project. Z.L. fabricated the device and wrote the manuscript. R.L. analyzed the crystal structure results. Y.C., S.F., and W.L. analyzed the electrical results. H.D. analyzed the optical properties. All authors contributed to discussing the results and commenting on the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests regarding the publication of this research manuscript.
Ethical approval
This research study was conducted in compliance with ethical standards.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Li, Z., Liu, R., Chu, Y. et al. Dual-terminal artificial synapse in two-dimensional CrSBr memristor for neuromorphic computing. J Mater Sci: Mater Electron 35, 1091 (2024). https://doi.org/10.1007/s10854-024-12811-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10854-024-12811-1