Skip to main content
Log in

Dual-terminal artificial synapse in two-dimensional CrSBr memristor for neuromorphic computing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel computing technologies that imitate the principles of biological neural systems may serve low power consumption with significant cognitive and learning advantages. The development of memristors with non-volatile memory characteristics has opened up new applications in neuromorphic circuits and adaptive systems. However, conventional metal oxide memristor devices are generally based on oxygen vacancy or metal-ion conductive filament mechanisms that make it hard to realize the function of neuromorphic computing. Herein, we demonstrate that CrSBr nanosheet-based memristor exhibits high durability, low power consumption, and the capacity to achieve multiple reproducible resistance states, displaying resistive switching performance. Furthermore, we successfully simulated various synaptic behaviors, such as short-term/long-term plasticity, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP), revealing the capability of CrSBr memristors to flexibly meet the demands of complex neuromorphic computing applications. Our work makes CrSBr a promising candidate which is considered to be the behavior of an ideal synaptic biomimetic device in future computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The research data generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACM SIGARCH. 23(1), 20–24 (1995). https://doi.org/10.5555/3338075.3338086

    Article  Google Scholar 

  2. X.B. Yan et al., A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 15(25), 1900107 (2019). https://doi.org/10.1002/smll.201900107

    Article  CAS  Google Scholar 

  3. C.C. Zhang et al., Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem. Commun. 52(26), 4828–4831 (2016). https://doi.org/10.1039/c6cc00989a

    Article  CAS  Google Scholar 

  4. Q.T. Wu et al., Full imitation of synaptic metaplasticity based on memristor devices. Nanoscale 10(13), 5875–5881 (2018). https://doi.org/10.1039/c8nr00222c

    Article  CAS  PubMed  Google Scholar 

  5. R. Wang et al., Bipolar analog memristors as artificial synapses for neuromorphic computing. Materials. 11(11), 2102 (2018). https://doi.org/10.3390/ma11112102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431(7010), 796–803 (2004). https://doi.org/10.1038/nature03010

    Article  CAS  PubMed  Google Scholar 

  7. G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). https://doi.org/10.1088/0957-4484/24/38/384010

    Article  CAS  PubMed  Google Scholar 

  8. J.J.S. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013). https://doi.org/10.1038/nnano.2012.240

    Article  CAS  PubMed  Google Scholar 

  9. D. Ielmini, H.S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1(6), 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2

    Article  Google Scholar 

  10. J.J. Zhang et al., AgInSbTe memristor with gradual resistance tuning. Appl. Phys. Lett. 102(18), 3513 (2013). https://doi.org/10.1063/1.4804983

    Article  CAS  Google Scholar 

  11. S.H. Pei, Z.H. Wang, J. Xia, Interlayer coupling: an additional degree of freedom in two-dimensional materials. ACS Nano 16(8), 11498–11503 (2022). https://doi.org/10.1021/acsnano.1c11498

    Article  CAS  PubMed  Google Scholar 

  12. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  CAS  PubMed  Google Scholar 

  13. D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5(1), 5678 (2014). https://doi.org/10.1038/ncomms6678

    Article  CAS  PubMed  Google Scholar 

  14. A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, D. Akinwande, Buckled two-dimensional Xene sheets. Nat. Mater. 16(2), 163–169 (2017). https://doi.org/10.1038/s41467-023-41688-7

    Article  CAS  PubMed  Google Scholar 

  15. A.A. Bessonov et al., Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14(2), 199–204 (2015). https://doi.org/10.1038/nmat4135

    Article  CAS  PubMed  Google Scholar 

  16. X.B. Yan et al., Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 15(24), 1901423 (2019). https://doi.org/10.1002/smll.201901423

    Article  CAS  Google Scholar 

  17. M. Wang et al., Robust memristors based on layered two-dimensional materials. Nat. Electron. 1(2), 130–136 (2018). https://doi.org/10.1038/s41928-018-0021-4

    Article  CAS  Google Scholar 

  18. R.J. Xu et al., Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19(4), 2411–2417 (2019). https://doi.org/10.1021/acs.nanolett.8b05140

    Article  CAS  PubMed  Google Scholar 

  19. Q.A. Vu et al., A high-on/off-ratio floating-gate memristor array on a flexible substrate via CVD-grown large-area 2D layer stacking. Adv. Mater. 29(44), 1703363 (2017). https://doi.org/10.1002/adma.201703363

    Article  CAS  Google Scholar 

  20. L.F. Sun et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7(20), 1455 (2021). https://doi.org/10.1126/sciadv.abg1455

    Article  CAS  Google Scholar 

  21. E.J. Telford et al., Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32(37), 2003240 (2020). https://doi.org/10.1002/adma.202003240

    Article  CAS  Google Scholar 

  22. M. Kayyalha, J. Maassen, M. Lundstrom, L. Shi, Y.P. Chen, Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2. J. Appl. Phys. 120(13), 134305 (2016). https://doi.org/10.1063/1.4963364

    Article  CAS  Google Scholar 

  23. F. Wu, I. Gutiérrez-Lezama, S.A. López-Paz et al., Quasi-1D electronic transport in a 2D magnetic semiconductor. Adv. Mater. 34(16), 2109759 (2022). https://doi.org/10.1002/adma.202109759

    Article  CAS  Google Scholar 

  24. A. Avsar, Highly anisotropic van der Waals magnetism. Nat. Mater. 21(7), 731–733 (2022). https://doi.org/10.1038/s41563-022-01299-x

    Article  CAS  PubMed  Google Scholar 

  25. X. Xu, X. Wang, P. Chang et al., Strong spin-phonon coupling in two-dimensional magnetic semiconductor CrSBr. J. Phys. Chem. C 126(25), 10574–10583 (2022). https://doi.org/10.1021/acs.jpcc.2c02742

    Article  CAS  Google Scholar 

  26. N.P. Wilson, K. Lee, J. Cenker et al., Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20(12), 1657–1662 (2021). https://doi.org/10.1038/s41563-021-01070-8

    Article  CAS  PubMed  Google Scholar 

  27. C. Hou, X. Wang, Y. Sun et al., Magnetic-electronic coupling in the strained bilayer CrSBr. J. Phys. Chem. C 127(46), 22833–22841 (2023). https://doi.org/10.1021/acs.jpcc.3c06426

    Article  CAS  Google Scholar 

  28. C. Ye et al., Layer-dependent interlayer antiferromagnetic spin reorientation in air-stable semiconductor CrSBr. ACS Nano 16(8), 11876–11883 (2022). https://doi.org/10.1021/acsnano.2c01151

    Article  CAS  PubMed  Google Scholar 

  29. W. Liu, X. Guo, J. Schwartz et al., A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals bulk magnet CrSBr. ACS Nano 16(10), 15917–15926 (2022). https://doi.org/10.1021/acsnano.2c02896

    Article  CAS  PubMed  Google Scholar 

  30. M.E. Ziebel, M.L. Feuer, J. Cox et al., CrSBr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 24(15), 4319–4329 (2024). https://doi.org/10.1021/acs.nanolett.4c00624

    Article  CAS  PubMed  Google Scholar 

  31. F. Moro, S. Ke, A.G. del Águila et al., Revealing 2D magnetism in a bulk CrSBr single crystal by electron spin resonance. Adv. Func. Mater. 32(45), 2207044 (2022). https://doi.org/10.1002/adfm.202207044

    Article  CAS  Google Scholar 

  32. D.J. Rizzo, A.S. McLeod, C. Carnahan et al., Visualizing atomically layered magnetism in CrSBr. Adv. Mater. 34(27), 2201000 (2022). https://doi.org/10.1002/adma.202201000

    Article  CAS  Google Scholar 

  33. H.H. Radamson, Graphene. Springer handbook of electronic and photonic materials. (2017). https://doi.org/10.1007/978-3-319-48933-9_48

    Article  Google Scholar 

  34. M. Kolahdouz, B. Xu, A.F. Nasiri et al., Carbon-related materials: graphene and carbon nanotubes in semiconductor applications and design. Micromachines. 13(8), 1257 (2022). https://doi.org/10.3390/mi13081257

    Article  PubMed  PubMed Central  Google Scholar 

  35. K. Torres et al., Probing defects and spin-phonon coupling in CrSBr via resonant raman scattering. Adv. Func. Mater. 33(12), 2211366 (2023). https://doi.org/10.1002/adfm.202211366

    Article  CAS  Google Scholar 

  36. A. Pawbake, T. Pelini, N.P. Wilson et al., Raman scattering signatures of strong spin-phonon coupling in the bulk magnetic van der Waals material CrSBr. Phys. Rev. B 107(7), 075421 (2023). https://doi.org/10.1103/PhysRevB.107.075421

    Article  CAS  Google Scholar 

  37. F. Moro et al., Revealing 2D magnetism in a bulk CrSBr single crystal by electron spin resonance. Adv. Func. Mater. 32(45), 2207044 (2022). https://doi.org/10.1002/adfm.202207044

    Article  CAS  Google Scholar 

  38. K. Yang, G. Wang, L. Liu et al., Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr. Phys. Rev. B 104(14), 144416 (2021). https://doi.org/10.1103/PhysRevB.104.144416

    Article  CAS  Google Scholar 

  39. F. Marques-Moros, C. Boix-Constant, S. Mañas-Valero, J. Canet-Ferrer, E. Coronado, Interplay between optical emission and magnetism in the van der waals magnetic semiconductor CrSBr in the two-dimensional limit. ACS Nano 17(14), 13224–13231 (2023). https://doi.org/10.1021/acsnano.3c00375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. N.P. Wilson et al., Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20(12), 1657–1662 (2021). https://doi.org/10.1038/s41563-021-01070-8

    Article  CAS  PubMed  Google Scholar 

  41. D.H. Kwon et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010). https://doi.org/10.1038/nnano.2009.456

    Article  CAS  PubMed  Google Scholar 

  42. S. Kumar, J.P. Strachan, R.S.T. Williams, Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548(7667), 318–321 (2017). https://doi.org/10.1038/nature23307

    Article  CAS  PubMed  Google Scholar 

  43. H.H. Radamson, A. Hallén, I. Sychugov et al., Analytical methods and instruments for micro-and nanomaterials (Springer, Berlin, 2023)

    Book  Google Scholar 

  44. M. Nikolka, K. Broch, J. Armitage et al., High-mobility, trap-free charge transport in conjugated polymer diodes. Nat. Commun. 10(1), 2122 (2019). https://doi.org/10.17863/CAM.36394

    Article  PubMed  PubMed Central  Google Scholar 

  45. P.R. Emtage, W. Tantraporn, Schottky emission through thin insulating films. Phys. Rev. Lett. 8(7), 267 (1962). https://doi.org/10.1103/PhysRevLett.8.267

    Article  Google Scholar 

  46. X. Yan et al., Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C. 5(9), 2259–2267 (2017). https://doi.org/10.1039/C6TC04261A

    Article  CAS  Google Scholar 

  47. J.M. Zhou, N. Liu, L.Q. Zhu, Y. Shi, Q. Wan, Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors. IEEE Electron Device Lett. 36(2), 198–200 (2014). https://doi.org/10.1109/led.2014.2381631

    Article  Google Scholar 

  48. Q.F. Xia, J.J. Yang, Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18(4), 309–323 (2019). https://doi.org/10.1038/s41563-019-0291-x

    Article  CAS  PubMed  Google Scholar 

  49. J.Q. Yang et al., Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32(52), 2003610 (2020). https://doi.org/10.1002/adma.202003610

    Article  CAS  Google Scholar 

  50. R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64(1), 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547

    Article  CAS  PubMed  Google Scholar 

  51. Y. Li et al., Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 3(1), 1619 (2013). https://doi.org/10.1038/srep01619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. X.B. Yan et al., Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Func. Mater. 28(1), 1705320 (2018). https://doi.org/10.1002/adfm.201705320

    Article  CAS  Google Scholar 

  53. G.L. Ma, M.H. Man, Y.Q. Zhang, S.H. Liu, A fast homeostatic inhibitory plasticity rule circuit with a memristive synapse. Electronics 12(3), 490 (2023). https://doi.org/10.3390/electronics12030490

    Article  Google Scholar 

  54. M. Prezioso et al., Training andoperation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441

    Article  CAS  PubMed  Google Scholar 

  55. C. Shi et al., Flexible and insoluble artificial synapses based on chemical cross-linked wool keratin. Adv. Func. Mater. 30(45), 2002882 (2020). https://doi.org/10.1002/adfm.202002882

    Article  CAS  Google Scholar 

  56. M. Kim et al., Filamentary and interface-type memristors based on tantalum oxide for energy-efficient neuromorphic hardware. ACS Appl. Mater. Interfaces 14(39), 44561–44571 (2022). https://doi.org/10.1021/acsami.2c12296

    Article  CAS  PubMed  Google Scholar 

  57. J. Shen et al., Low consumption two-terminal artificial synapse based on transfer-free single-crystal MoS2 memristor. Nanotechnology 31(26), 265202 (2020). https://doi.org/10.1088/1361-6528/ab82d6

    Article  CAS  PubMed  Google Scholar 

  58. M. Kumar, D.K. Ban, S.M. Kim, J. Kim, C.P. Wong, Vertically aligned WS2 layers for high-performing memristors and artificial synapses. Adv. Electron. Mater. 5(10), 1900467 (2019). https://doi.org/10.1002/aelm.201900467

    Article  CAS  Google Scholar 

  59. X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18(2), 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5

    Article  CAS  PubMed  Google Scholar 

  60. S. Luo et al., A synaptic memristor based on two-dimensional layered WSe2 nanosheets with short- and long-term plasticity. Nanoscale 13(13), 6654–6660 (2021). https://doi.org/10.1039/d0nr08725d

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA1600800), the National Natural Science Foundation of China (Nos. 11975234, 12105286, 12275271, and 12305369), Major Science and Technology Project of Anhui Province (No. 202103a05020025), the Key Program of Research and Development of Hefei Science Center CAS (No. 2021HSC-KPRD002), the Users with Excellence Program of Hefei Science Center CAS (Nos. 2020HSC-CIP013, 2021HSC-UE002), Collaborative Innovation Program of Hefei Science Center CAS (No. 2022HSC-CIP028), the Fundamental Research Funds for the Central Universities (No. WK2310000103), and partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and W.Y. conceived the experiments and supervised the project. Z.L. fabricated the device and wrote the manuscript. R.L. analyzed the crystal structure results. Y.C., S.F., and W.L. analyzed the electrical results. H.D. analyzed the optical properties. All authors contributed to discussing the results and commenting on the manuscript.

Corresponding author

Correspondence to Chaocheng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests regarding the publication of this research manuscript.

Ethical approval

This research study was conducted in compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 934 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, R., Chu, Y. et al. Dual-terminal artificial synapse in two-dimensional CrSBr memristor for neuromorphic computing. J Mater Sci: Mater Electron 35, 1091 (2024). https://doi.org/10.1007/s10854-024-12811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12811-1

Navigation