Skip to main content
Log in

Device optimization of FASnI3 / MAPbI3 tandem solar cells: evaluating carrier recombination and engineering parameters for high PCE

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study introduces the design and optimization of a perovskite-–perovskite tandem solar cell (PPTSC) composed of all perovskite absorber materials. The optimization process involved individual tuning of top and bottom perovskite solar cells, comprising MAPbI3 and FASnI3, respectively. Various material properties, including thickness, electrical characteristics, and recombination mechanisms such as radiative recombination, Auger electron, Auger hole, and band-to-band recombination, have been systematically tuned. After optimizing each subcell independently, the standalone subcells have been then integrated into PPTSC. The optimum PPTSC thickness has been determined by achieving a matching current for each subcell. By changing each subcell's thickness, a current matching \({J}_{sc}\) of 13.4 mA/cm2 has been achieved with a 135 nm top subcell thickness and a bottom subcell thickness of 400 nm. Under these conditions of current matching, the designed device indicated that the tandem cell would exhibit a notably enhanced voltage in the open circuit (Voc) of 3.080 V. Consequently, this configuration would result in an impressive efficiency of 38.5%, surpassing the individual efficiencies of each subcell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. R. Sharif, A. Khalid, S.W. Ahmad, A. Rehman, H.G. Qutab, H.H. Akhtar, K. Mahmood, S. Afzal, F. Saleem, Nanoscale Adv. 5, 3803 (2023). https://doi.org/10.1039/d3na00319a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P. Thakur, N. Sharma, D. Pathak, P. Sharma, K. Kishore, S. Dhar, M. Lal, Emergent Mater. (2024). https://doi.org/10.1007/s42247-024-00645-w

    Article  Google Scholar 

  3. S. Saadi, B. Nazari, J. Compos. Compd. 1, 34 (2019). https://doi.org/10.29252/jcc.1.1.7

    Article  Google Scholar 

  4. S. Foo, M. Thambidurai, P. Senthil Kumar, R. Yuvakkumar, Y. Huang, C. Dang, Int. J. Energy Res. 46, 21441 (2022)

    Article  CAS  Google Scholar 

  5. M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Science (80-. ) 358, 745 (2017). https://doi.org/10.1126/science.aam7093

    Article  CAS  Google Scholar 

  6. R. Kumar, M. Bag, Energy Technol. 10, 1 (2022). https://doi.org/10.1002/ente.202100889

    Article  CAS  Google Scholar 

  7. H.S. Magar, A.M. Mansour, A.B.A. Hammad, Sci. Rep. 14, 1 (2024). https://doi.org/10.1038/s41598-024-52262-6

    Article  CAS  Google Scholar 

  8. S. Li, Y.L. Cao, W.H. Li, Z.S. Bo, Rare Met. 40, 2712 (2021). https://doi.org/10.1007/s12598-020-01691-z

    Article  CAS  Google Scholar 

  9. C. Zhao, S. Yu, W. Tang, X. Yuan, H. Zhou, T. Qi, X. Zheng, D. Ning, M. Ma, J. Zhu, J. Zhang, C. Yang, W. Li, Mater Reports Energy (2023). https://doi.org/10.1016/j.matre.2023.100214

    Article  Google Scholar 

  10. S. Gohri, J. Madan, R. Pandey, J. Electron. Mater. 52, 6335 (2023). https://doi.org/10.1007/s11664-023-10567-8

    Article  CAS  Google Scholar 

  11. J. Kalowekamo, E. Baker, Sol. Energy 83, 1224 (2009). https://doi.org/10.1016/j.solener.2009.02.003

    Article  CAS  Google Scholar 

  12. J.H. Yim, S.Y. Joe, C. Pang, K.M. Lee, H. Jeong, J.Y. Park, Y.H. Ahn, J.C. De Mello, S. Lee, ACS Nano 8, 2857 (2014). https://doi.org/10.1021/nn406672n

    Article  CAS  PubMed  Google Scholar 

  13. W. Qiu, Y. Wu, Y. Wang, Z. Yang, R. Yang, C. Zhang, Y. Hao, Y. Hao, Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.143656

    Article  Google Scholar 

  14. J.L. Prasanna, E. Goel, A. Kumar, Opt. Quantum Electron. 55, 610 (2023). https://doi.org/10.1007/s11082-023-04876-9

    Article  CAS  Google Scholar 

  15. N. Zhang, Z. Zhang, T. Liu, T. He, P. Liu, J. Li, F. Yang, G. Song, Z. Liu, M. Yuan, Org. Electron. (2023). https://doi.org/10.1016/j.orgel.2022.106709

    Article  Google Scholar 

  16. W. Shen, Y. Dong, F. Huang, Y.B. Cheng, J. Zhong, Mater Reports Energy (2021). https://doi.org/10.1016/j.matre.2021.100060

    Article  Google Scholar 

  17. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H.X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, J. You, Science (80-. ) 377, 531 (2022). https://doi.org/10.1126/science.abp8873

    Article  CAS  Google Scholar 

  19. Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou, B. Guo, K. Yang, Z. Kan, S. Lu, S. Chen, N.A.N. Ouedraogo, Y. Cho, C. Yang, J. Chen, K. Sun, Adv. Mater. 34, 1 (2022). https://doi.org/10.1002/adma.202106118

    Article  CAS  Google Scholar 

  20. Y. Wang, W. Li, Y. Yin, M. Wang, W. Cai, Y. Shi, J. Guo, W. Shang, C. Zhang, Q. Dong, H. Ma, J. Liu, W. Tian, S. Jin, J. Bian, Y. Shi, Adv. Funct. Mater. 32, 1 (2022). https://doi.org/10.1002/adfm.202204831

    Article  CAS  Google Scholar 

  21. P. Singh, A. Kumar, Silicon (2023). https://doi.org/10.1007/s12633-023-02717-8

    Article  Google Scholar 

  22. Z. Ying, Z. Yang, J. Zheng, H. Wei, L. Chen, C. Xiao, J. Sun, C. Shou, G. Qin, J. Sheng, Y. Zeng, B. Yan, X. Yang, J. Ye, Joule 6, 2644 (2022). https://doi.org/10.1016/j.joule.2022.09.006

    Article  CAS  Google Scholar 

  23. T. Islam, R. Jani, A.F. Islam, K. Shorowordi, S. Chowdhury, IEEE Trans. Electron. Devices 68, 618 (2021). https://doi.org/10.1109/TED.2020.3045383

    Article  CAS  Google Scholar 

  24. C. Messmer, B.S. Goraya, S. Nold, P.S.C. Schulze, V. Sittinger, J. Schön, J.C. Goldschmidt, M. Bivour, S.W. Glunz, M. Hermle, Prog. Photovoltaics Res. Appl. 29, 744 (2021). https://doi.org/10.1002/pip.3372

    Article  CAS  Google Scholar 

  25. A. Ait Abdelkadir, E. Oublal, M. Sahal, B.M. Soucase, A. Kotri, M. Hangoure, N. Kumar, Silicon 15, 2125 (2023). https://doi.org/10.1007/s12633-022-02144-1

    Article  CAS  Google Scholar 

  26. R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S.M. Park, G. Chen, H.R. Atapattu, K.R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E.H. Sargent, H. Tan, Nature 603, 73 (2022). https://doi.org/10.1038/s41586-021-04372-8

    Article  CAS  PubMed  Google Scholar 

  27. S. Gohri, J. Madan, R. Pandey, R. Sharma, Opt. Quantum Electron. 55, 1 (2023). https://doi.org/10.1007/s11082-022-04381-5

    Article  CAS  Google Scholar 

  28. S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2021.111893

    Article  Google Scholar 

  29. T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Nat. Energy 3, 828 (2018). https://doi.org/10.1038/s41560-018-0190-4

    Article  CAS  Google Scholar 

  30. Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao, Y. Li, H. Zhou, Q. Chen, Joule 2, 1559 (2018). https://doi.org/10.1016/j.joule.2018.05.001

    Article  CAS  Google Scholar 

  31. A.W.Y. Ho-Baillie, J. Zheng, M.A. Mahmud, F.J. Ma, D.R. McKenzie, M.A. Green, Appl. Phys. Rev (2021). https://doi.org/10.1063/5.0061483

    Article  Google Scholar 

  32. X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science (80-. ) 375, 434 (2022). https://doi.org/10.1126/science.abl5676

    Article  CAS  Google Scholar 

  33. C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu, D. Zhao, X. Li, Nat. Energy 7, 744 (2022). https://doi.org/10.1038/s41560-022-01076-9

    Article  CAS  Google Scholar 

  34. J. Tong, Q. Jiang, A.J. Ferguson, A.F. Palmstrom, X. Wang, J. Hao, S.P. Dunfield, A.E. Louks, S.P. Harvey, C. Li, H. Lu, R.M. France, S.A. Johnson, F. Zhang, M. Yang, J.F. Geisz, M.D. Mcgehee, M.C. Beard, Y. Yan, D. Kuciauskas, J.J. Berry, K. Zhu, Nat. Energy 7, 642 (2022). https://doi.org/10.1038/s41560-022-01046-1

    Article  CAS  Google Scholar 

  35. S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Opt. Mater. (Amst). 101, 3 (2020). https://doi.org/10.1016/j.optmat.2020.109738

    Article  CAS  Google Scholar 

  36. A.U. Duha, M.F. Borunda, Opt. Mater. (Amst). 123, 111891 (2022). https://doi.org/10.1016/j.optmat.2021.111891

    Article  CAS  Google Scholar 

  37. F. Azri, A. Meftah, N. Sengouga, A. Meftah, Sol. Energy 181, 372 (2019). https://doi.org/10.1016/j.solener.2019.02.017

    Article  CAS  Google Scholar 

  38. S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Opt. Mater. (Amst). 101, 109738 (2020). https://doi.org/10.1016/j.optmat.2020.109738

    Article  CAS  Google Scholar 

  39. Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Sol. Energy 207, 579 (2020). https://doi.org/10.1016/j.solener.2020.07.012

    Article  CAS  Google Scholar 

  40. N. Lakhdar, A. Hima, Opt. Mater. (Amst). 99, 109517 (2020). https://doi.org/10.1016/j.optmat.2019.109517

    Article  CAS  Google Scholar 

  41. P. Xie, H. Xiao, Y. Qiao, G. Qu, J. Chen, X. Liu, Z.X. Xu, Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2023.142328

    Article  Google Scholar 

  42. Z. Zhu, X. Jiang, D. Yu, N. Yu, Z. Ning, Q. Mi, ACS Energy Lett. (2022). https://doi.org/10.1021/acsenergylett.2c00776

    Article  PubMed  PubMed Central  Google Scholar 

  43. R. Pandey, S. Bhattarai, K. Sharma, J. Madan, A.K. Al-Mousoi, M.K.A. Mohammed, M.K. Hossain, A.C.S. Appl, Electron. Mater. (2022). https://doi.org/10.1021/acsaelm.2c01574

    Article  Google Scholar 

  44. X. Zhang, H. Zhou, C. Hu, Y. Zhao, X. Ma, J. Wu, Y. Qi, W. Fang, S. Jia, J. Yu, Sol. Energy Mater. Sol. Cells 260, 1 (2023). https://doi.org/10.1016/j.solmat.2023.112487

    Article  CAS  Google Scholar 

  45. D. Yang, Y. Weng, Z. Shen, M. Jin, H. Shen, Q. Du, J. Zheng, F. Li, C. Chen, Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2022.140160

    Article  PubMed  PubMed Central  Google Scholar 

  46. A.K. Al-Mousoi, M.K.A. Mohammed, A. Kumar, R. Pandey, J. Madan, D. Dastan, M.K. Hossain, P. Sakthivel, G. Anandha Babu, Z.M. Yaseen, Phys. Chem. 25, 16459 (2023). https://doi.org/10.1039/d3cp00441d

    Article  CAS  Google Scholar 

  47. J. Wands, A. Kanevce, A. Bothwell, M.F. Miller, S. Paetel, A.R. Arehart, A. Rockett, IEEE J. Photovoltaics 12, 1400 (2022). https://doi.org/10.1109/JPHOTOV.2022.3197926

    Article  Google Scholar 

  48. T.T. Larsen-Olsen, T.R. Andersen, B. Andreasen, A.P.L. Böttiger, E. Bundgaard, K. Norrman, J.W. Andreasen, M. Jørgensen, F.C. Krebs, Sol. Energy Mater. Sol. Cells 97, 43 (2012). https://doi.org/10.1016/j.solmat.2011.08.025

    Article  CAS  Google Scholar 

  49. A.K. Singh, M.S. Chauhan, S.P. Patel, R.S. Singh, V.K. Singh, Results Opt. 10, 1 (2023). https://doi.org/10.1016/j.rio.2023.100358

    Article  Google Scholar 

  50. X. Luo, Y. Hu, Z. Lin, X. Guo, S. Zhang, C. Shou, Z. Hu, X. Zhao, Y. Hao, J. Chang 2300081, 1 (2023). https://doi.org/10.1002/solr.202300081

    Article  CAS  Google Scholar 

  51. M.A. Ruiz-preciado, F. Gota, P. Fassl, I.M. Hossain, R. Singh, F. Laufer, F. Schackmar, T. Feeney, A. Farag, I. Allegro, H. Hu, S. Gharibzadeh, B.A. Nejand, V.S. Gevaerts, M. Simor, P.J. Bolt, U.W. Paetzold, ACS Energy Lett. 7, 2273 (2022). https://doi.org/10.1021/acsenergylett.2c00707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M.I. Hossain, A.M. Saleque, R. Huqe, W. Qarony, S. Ahmed, D. Knipp, Y.H. Tsang, T. Taima, J. A. Zapien 2100509, 1 (2021). https://doi.org/10.1002/solr.202100509

    Article  CAS  Google Scholar 

  53. E.D. Jung, C.U. Kim, Y.W. Noh, S.K. Seo, Y.I. Noh, K.J. Choi, M.H. Song, EcoMat (2023). https://doi.org/10.1002/eom2.12399

    Article  Google Scholar 

  54. L. Dai, S. Li, Y. Hu, J. Huang, Z. Liu, H. Shi, G. Guan, Y. Shen, ACS Energy Lett. 8, 3839 (2023). https://doi.org/10.1021/acsenergylett.3c01347

    Article  CAS  Google Scholar 

  55. A.K. Singh, M.S. Chauhan, S.P. Patel, R.S. Singh, V.K. Singh, Results Opt. 10, 100358 (2023). https://doi.org/10.1016/j.rio.2023.100358

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Science and Technology (DST), Government of India (GOI), for the financial support provided under the DST SERB Project (File No. SRG/2021/002110), which facilitated the completion of this study. Dr. Amitesh Kumar acknowledges DST SERB for sponsoring a Start-up Research Grant, enabling research activities at NIT Patna pertaining to this project. Mr. Parshuram Singh extends appreciation to the Ministry of Education and NIT Patna for their support through a research fellowship.

Funding

The Department of Science and Technology (DST), GOI, is acknowledged by the authors for the financial support given under the DST SERB Project (File No. SRG/2021/002110) that allowed to complete this study.

Author information

Authors and Affiliations

Authors

Contributions

PS: Data curation, software, conceptualization, methodology, and visualization, investigation, and writing—original draft preparation. AK: conceptualization, methodology, supervision, editing and reviewing, visualization, and research.

Corresponding author

Correspondence to Amitesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that no known competing financial interests or personal relationships influence any work reported in this study.

Ethical approval

Inapplicable. Since the work described in this publication focuses on the design of solar cells and no human or animal experimentation was done, ethical committee approval is unnecessary.

Consent to participate

Not applicable.

Consent for publication

The authors have given consent for publication as per the journal policy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kumar, A. Device optimization of FASnI3 / MAPbI3 tandem solar cells: evaluating carrier recombination and engineering parameters for high PCE. J Mater Sci: Mater Electron 35, 985 (2024). https://doi.org/10.1007/s10854-024-12757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12757-4

Navigation