Skip to main content

Advertisement

Log in

Thermal, mechanical, and dielectric properties of Gd2O3 doped cordierite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we utilized the solid-state synthesis method to prepare a Gd2O3-doped cordierite ceramic (0–12.5 wt%). Our objective was to investigate the effects of Gd2O3 doping on various properties, including phase composition, microstructure, sintering characteristics, thermal expansion, mechanical strength, and dielectric properties of cordierite ceramics. Our findings indicated that the introduction of Gd3+ ions had a significant impact on the formation of the cordierite phase, the reduction of spinel impurity, and the growth of grain size, leading to a decrease in the coefficient of thermal expansion. As the amount of Gd2O3 doping increased, the coefficient of thermal expansion decreased from 2.91 × 10–6/°C to 2.15 × 10–6/°C. We achieved the highest flexural strength of 68.54 ± 2.36 MPa in cordierite ceramic doping with 10 wt% Gd2O3 due to optimal densification. Moreover, the quality factor increased from 30,400 GHz to 64,800 GHz, and the dielectric constant ranged from 4.08 to 6.19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. X. Lao, X. Xu, W. Jiang, J. Liang, J. Liu, Ceram. Int. 45, 22264 (2019)

    Article  CAS  Google Scholar 

  2. Y. Xia, K. Shi, Mater. Lett. 215, 99 (2018)

    Article  CAS  Google Scholar 

  3. A. Yahya, A. Soltan, R. Mahani, B. El-Kaliouby, S. Kenawy, E.M.A. Hamzawy, SILICON 15, 2901 (2022)

    Article  Google Scholar 

  4. K. Tabit, M. Waqif, L. Saâdi, Mater. Chem. Phys. 254, 123472 (2020)

    Article  CAS  Google Scholar 

  5. Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu, Z. Li, J. Alloys Compd. 619, 854 (2015)

    Article  CAS  Google Scholar 

  6. A. Ramezani, S.M. Emami, S. Nemat, J. Hazard. Mater. 338, 177 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. W. Lou, M. Mao, K. Song, K. Xu, B. Liu, W. Li, B. Yang, Z. Qi, J. Zhao, S. Sun, H. Lin, Y. Hu, D. Zhou, D. Wang, I.M. Reaney, J. Eur. Ceram. Soc. 42, 2820 (2022)

    Article  CAS  Google Scholar 

  8. R. Johnson, I. Ganesh, B.P. Saha, G.V.N. Rao, Y.R. Mahajan, J. Mater. Sci. 38, 2953 (2003)

    Article  CAS  Google Scholar 

  9. Z. Xiu, M. Mao, Z. Lu, Z. Huang, Z. Qi, H.B. Bafrooei, T. Zhou, D. Wang, H. Lin, E. Taheri-nassaj, K. Song, J. Eur. Ceram. Soc. 42, 5712 (2022)

    Article  CAS  Google Scholar 

  10. W. Lou, K. Song, F. Hussain, A. Khesro, J. Zhao, H.B. Bafrooei, T. Zhou, B. Liu, M. Mao, K. Xu, E. Taheri-nassaj, D. Zhou, S. Luo, S. Sun, H. Lin, D. Wang, J. Eur. Ceram. Soc. 42, 2254 (2022)

    Article  CAS  Google Scholar 

  11. F. Wang, Y. Lai, Q. Zhang, X. Yang, B. Li, C. Wu, H. Su, G. Jiang, Solid State Sci. 132, 106989 (2022)

    Article  CAS  Google Scholar 

  12. W. Lou, K. Song, F. Hussain, B. Liu, H.B. Bafrooei, H. Lin, W. Su, F. Shi, D. Wang, Ceram. Int. 46, 28631 (2020)

    Article  CAS  Google Scholar 

  13. B. Fotoohi, S. Blackburn, J. Eur. Ceram. Soc. 32, 2267 (2012)

    Article  CAS  Google Scholar 

  14. W. Tang, Q. Zhang, Z. Luo, L. Han, A. Lu, SILICON 10, 2123 (2018)

    Article  CAS  Google Scholar 

  15. H. Zhang, Y. Wang, Y. Hu, W. Mao, Y. Zou, G. Chen, S. Wang, D. Jia, Y. Zhou, J. Alloys Compd. 892, 162164 (2022)

    Article  CAS  Google Scholar 

  16. H. Zhang, H. Jia, Y. Wang, Y. Zou, S. Wang, G. Chen, Y. Zhang, J. Ouyang, D. Jia, Y. Zhou, Mater. Today Commun. 31, 103836 (2022)

    Article  CAS  Google Scholar 

  17. J. Wei, P. Liu, H. Lin, Z. Ying, P. Zheng, W. Su, K. Song, H. Qin, J. Alloys Compd. 689, 81 (2016)

    Article  CAS  Google Scholar 

  18. K. Song, P. Liu, H. Lin, W. Su, J. Jiang, S. Wu, J. Wu, Z. Ying, H. Qin, J. Eur. Ceram. Soc. 36, 1167 (2016)

    Article  CAS  Google Scholar 

  19. K. Song, S. Wu, P. Liu, H. Lin, Z. Ying, P. Zheng, W. Su, J. Deng, L. Zheng, H. Qin, J. Alloys Compd. 628, 57 (2015)

    Article  CAS  Google Scholar 

  20. J. Wu, C. Lu, X. Xu, D. Wang, Y. Sang, C. Zhang, J. Aust. Ceram. Soc. 53, 499 (2017)

    Article  CAS  Google Scholar 

  21. W. Luo, Z. Bao, W. Jiang, J. Liu, G. Feng, Y. Xu, H. Tang, T. Wang, Ceram. Int. 45, 24750 (2019)

    Article  CAS  Google Scholar 

  22. H. Malekzadeh, M. Rezvani, J. Sol-Gel Sci. Technol. 68, 128 (2013)

    Article  CAS  Google Scholar 

  23. V. Uvarov, I. Popov, Mater Charact 85, 111 (2013)

    Article  CAS  Google Scholar 

  24. R.M. Khattab, H.H. Abo-Almaged, N.A. Ajiba, H.A. Badr, A.A. Gaber, M.A. Taha, H.E.H. Sadek, Mater. Chem. Phys. 270, 124829 (2021)

    Article  CAS  Google Scholar 

  25. S.-M. Wang, F.-H. Kuang, Q.-Z. Yan, C.-C. Ge, L.-H. Qi, J. Alloys Compd. 509, 2819 (2011)

    Article  CAS  Google Scholar 

  26. Y. Li, H. Zhao, J. Aust. Ceram. Soc. 55, 567 (2018)

    Article  Google Scholar 

  27. H. Li, C. Li, L. Wu, H. Wang, J. Li, M. Fu, C.-A. Wang, J. Alloys Compd. 826, 154121 (2020)

    Article  CAS  Google Scholar 

  28. A. Shyam, G. Bruno, T.R. Watkins, A. Pandey, E. Lara-Curzio, C.M. Parish, R.J. Stafford, J. Eur. Ceram. Soc. 35, 4557 (2015)

    Article  CAS  Google Scholar 

  29. H. Li, C. Li, L. Wu, H. Wang, J. Li, M. Fu, C.-A. Wang, Ceram. Int. 46, 14808 (2020)

    Article  CAS  Google Scholar 

  30. M. Senthil Kumar, A. Elaya Perumal, T.R. Vijayaram, J. Adv. Ceram. 4, 22 (2015)

    Article  CAS  Google Scholar 

  31. Z. Chen, Z. Xu, F. Cui, J. Zhang, X. Sun, Y. Shang, R. Guo, N. Liu, S. Cai, C. Zheng, J. Eur. Ceram. Soc. 42, 1685 (2022)

    Article  CAS  Google Scholar 

  32. C.J. Xiao, Z.X. Li, L.Y. Zhu, H.T. Zhang, Int. J. Thermophys. 35, 346 (2014)

    Article  CAS  Google Scholar 

  33. S. He, Y. Gao, B. Zhou, H. Xie, X. Gan, Z. Xie, SILICON 14, 9863 (2022)

    Article  CAS  Google Scholar 

  34. Y. Zhou, C. He, Q. Ma, A. Shui, Ceram. Int. 49, 18937 (2023)

    Article  CAS  Google Scholar 

  35. X. Xu, X. Xu, J. Wu, X. Lao, Y. Zhang, K. Li, Ceram. Int. 42, 13525 (2016)

    Article  CAS  Google Scholar 

  36. L. Wang, B. Ma, X. Ren, C. Yu, C. Deng, C. Liu, C. Hu, Ceram. Int. 48, 25772 (2022)

    Article  CAS  Google Scholar 

  37. Y. Yue, X. Xu, M. Zhang, Z. Yan, V. Koval, R.M. Whiteley, D. Zhang, M. Palma, I. Abrahams, H. Yan, A.C.S. Appl, Mater. Interfaces 13, 57548 (2021)

    Article  CAS  Google Scholar 

  38. R. Freer, F. Azough, J. Eur. Ceram. Soc. 28, 1433 (2008)

    Article  CAS  Google Scholar 

  39. M. Terada, K. Kawamura, I. Kagomiya, K.-I. Kakimoto, H. Ohsato, J. Eur. Ceram. Soc. 27, 3045 (2007)

    Article  CAS  Google Scholar 

  40. L. Zhan, S. Ma, H. Tan, T. Lin, L. Han, H. Li, D. Xiong, Mater. Today Commun. 35, 105995 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Jiangsu Province Industry-University-Research Cooperation Program (BY20231042).

Funding

This work was supported by the Jiangsu Province Industry-University-Research Cooperation Program (BY20231042).

Author information

Authors and Affiliations

Authors

Contributions

Shoucheng He performed conception, design, analysis, and writing. Hanxi Sun, Yiming Dong, Zihan Yu, and Mengrui Pei performed material preparation and data collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shoucheng He.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Research involving human and animals participants

Not applicable.

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Sun, H., Dong, Y. et al. Thermal, mechanical, and dielectric properties of Gd2O3 doped cordierite ceramics. J Mater Sci: Mater Electron 35, 988 (2024). https://doi.org/10.1007/s10854-024-12751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12751-w

Navigation