Skip to main content
Log in

High durable TiO2 electrochromic films by Ni doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Doping with metal ions to enhance the electrochromic performance of single material is attracting widespread attention. In this work, undoped and nickel (Ni)-doped TiO2 electrochromic films with different doping content (0.5, 1, and 5 wt%) were successfully prepared via hydrothermal approach combined with a spin-coated technique. The effect of Ni on the microstructure, morphology, electrochemical and electrochromic performance of TiO2 films were deep studied by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS) and UV–Vis–NIR spectrophotometry coupled with an electrochemical workstation. FESEM images show a porous microstructure formation in all the coated films. HR-TEM images show that all the films have a polycrystalline phase with a preferred orientation along the anatase (101) plane of TiO2. The anatase (101) lattice spacing of Ni-doped TiO2 samples were gradually decreased to 0.355 nm, 0.351 nm and 0.342 nm as the doped Ni increased, respectively. XRD proves the HR-TEM result. The electrochemical analysis reveals that the appropriate 1% Ni doping presented the most remarkable electrochromic performance, including that the maximum ions diffusion coefficient of 9.65 × 10–10 cm2/s, the fastest coloring/bleaching switching time of 12.75 s and 1.99 s. Moreover, the 1% Ni-doping TiO2 electrochromic film showed superior cyclic performance–little attenuation occurred after 200 cycles, whereas the undoped sample decayed almost by half after 100 cycles. The study provided valuable insights for promoting the potential applications of nickel metal-doped electrochromic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Q. Ma, H. Zhang, J.X. Chen, W.W. Wu, S.J. Dong, Lithium-ion-assisted ultrafast charging double-electrode smart windows with energy storage and display applications. ACS Cent. Sci. 6, 2209–2216 (2020). https://doi.org/10.1021/acscentsci.0c01149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C.G. Granqvist, Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014). https://doi.org/10.1016/j.tsf.2014.02.002

    Article  CAS  Google Scholar 

  3. W.S. Liu, X.Y. Zhang, J.Q. Liu, X.D. Ma, J.M. Zeng, P. Liu, T.G. Xu, Electrochromic properties of organic-inorganic composite materials. J. Alloys Compd. 718, 379–385 (2017). https://doi.org/10.1016/j.jallcom.2017.05.222

    Article  CAS  Google Scholar 

  4. R.J. Mortimer, Organic electrochromic materials. Electrochim. Acta 44, 2971–2981 (1999). https://doi.org/10.1016/S0013-4686(99)00046-8

    Article  CAS  Google Scholar 

  5. D.T. Gillaspie, R.C. Tenent, A.C. Dillon, Metal-oxide films for electrochromic applications: present technology and future directions. J. Mater. Chem. 20, 9585–9592 (2010). https://doi.org/10.1039/C0JM00604A

    Article  CAS  Google Scholar 

  6. C.G. Granqvist, Oxide electrochromics: an introduction to devices and materials. Sol. Energy Mater. Sol. Cells 99, 1–13 (2012). https://doi.org/10.1016/j.solmat.2011.08.021

    Article  CAS  Google Scholar 

  7. M.A. Malati, W.K. Wong, Doping TiO2 for solar energy applications. Surf. Tech. 4, 305–322 (1984). https://doi.org/10.1016/0376-4583(84)90094-3

    Article  Google Scholar 

  8. B. Coskun, F. Ünal, M.M. KOÇ, Photodiode characteristics of TiO:NiO composite thin structures. J. Mater. Electron. Device. 2, 8–14 (2023)

    Google Scholar 

  9. A. Tataroğlu, A.G. Al-Sehemi, M. Ilhan, A.A. Al-Ghamdi, F. Yakuphanoglu, Optical, electrical and photoresponse properties of Si-based diodes with NiO-doped TiO2 film prepared by sol-gel method. Silicon 10, 913–920 (2018). https://doi.org/10.1007/s12633-016-9548-z

    Article  CAS  Google Scholar 

  10. S. Uyar, B. Coskun, M.M. KOÇ, M. Erkovan, Photodiode characteristics of TiO:NiO composite thin structures. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi. 7, 221–231 (2021). https://doi.org/10.34186/klujes.997005

    Article  Google Scholar 

  11. Z.G. Yang, D.W. Choi, S. Kerisit, K.M. Rasso, D.H. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power. Sources 192, 588–598 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.038

    Article  CAS  Google Scholar 

  12. C. Chen, W.M. Cai, M.C. Long, B.X. Zhou, Y.H. Wu, D.Y. Wu, Y.J. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4, 6425–6432 (2010). https://doi.org/10.1021/nn102130m

    Article  CAS  PubMed  Google Scholar 

  13. I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci. World J. 2012, 127326 (2012). https://doi.org/10.1100/2012/127326

    Article  CAS  Google Scholar 

  14. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Sci. Bull. 56, 1639–1657 (2011). https://doi.org/10.1007/s11434-011-4476-1

    Article  CAS  Google Scholar 

  15. X.X. Xue, W. Ji, Z. Mao, Y. Wang, X. Wang, W.D. Ruan, B. Zhao, J.R. Lombardi, Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement. J. Phys. Chem. C 116, 8792–8797 (2012). https://doi.org/10.1021/jp2122196

    Article  CAS  Google Scholar 

  16. W.J. Yue, Y.W. Pan, Z.W. Xie, X. Yang, L.L. Hu, L.R. Hong, Y.F. Tong, Q.Q. Cheng, Different depositing amount of CuInS2 on TiO2 nanoarrays for polymer/CuInS2–TiO2 solar cells. Mater. Sci. Semicond. Process. 40, 257–261 (2015). https://doi.org/10.1016/j.mssp.2015.06.072

    Article  CAS  Google Scholar 

  17. S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, S. Rohani, M.R. Gholami, Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid, J. Hazard. Mater. 172, 1573–1578 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.029

  18. B. Brioual, A. El-Habib, Z. Rossi, A. Aouni, M. Addou, M. Diani, M. Jbilou, Influence of Hf doping on structural, morphological, optical and electrochemical properties of NiO thin films: electrochromic application. J. Solid State Chem. 333, 124637 (2024). https://doi.org/10.1016/j.jssc.2024.124637

    Article  CAS  Google Scholar 

  19. A. El-Habib, B. Brioual, M. Bouachri, J. Zimou, A. Aouni, M. Diani, M. Addou, Synthesis and characterization of Nd-doped CeO2 thin films grown by spray pyrolysis method: structural, optical and electrochemical properties. Surf. Interfaces 45, 103859 (2024). https://doi.org/10.1016/j.surfin.2024.103859

    Article  CAS  Google Scholar 

  20. A. El-Habib, M. Addou, A. Aouni, M. Diani, J. Zimou, M. Bouachri, B. Brioual, R.F. Allash, Z. Rossi, M. Jbilou, Oxygen vacancies and defects tailored microstructural, optical and electrochemical properties of Gd doped CeO2 nanocrystalline thin films. Mat. Sci. Semicon. Proc. 145, 106631 (2022). https://doi.org/10.1016/j.mssp.2022.106631

    Article  CAS  Google Scholar 

  21. B. Brioual, H. Ghannam, Z. Rossi, A. Aouni, A. El-Habib, M. Diani, M. Addou, R. Matassa, S. Nottola, M. Jbilou, Effect of In-doping on electrochromic behavior of NiO thin films. Materialia 30, 101832 (2023). https://doi.org/10.1016/j.mtla.2023.101832

    Article  CAS  Google Scholar 

  22. L. Zhao, S.-G. Park, B. Magyari-Köpe, Y. Nishi, Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2 resistive memory. Appl. Phys. Lett. 102, 083506 (2013). https://doi.org/10.1063/1.4794083

    Article  CAS  Google Scholar 

  23. S.W. Du, J.H. Lian, F.X. Zhang, Visible light-responsive N-doped TiO2 photocatalysis: synthesis, characterizations, and applications. Trans. Tianjin Univ. 28, 33–52 (2022). https://doi.org/10.1007/s12209-021-00303

    Article  CAS  Google Scholar 

  24. Y.L. Su, X.W. Zhang, M.H. Zhou, S. Han, L.C. Lei, Preparation of high efficient photoelectrode of N-F-codoped TiO2 nanotubes. J. Photochem. Photobiol. A 194, 152–160 (2008). https://doi.org/10.1016/j.jphotochem.2007.08.002

    Article  CAS  Google Scholar 

  25. Z.P. Yao, F.Z. Jia, S.J. Tian, C.X. Li, Z.H. Jiang, X.F. Bai, Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation. ACS Appl. Mater. Interfaces 2, 2617–2622 (2010). https://doi.org/10.1021/am100450h

    Article  CAS  PubMed  Google Scholar 

  26. T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, C. Sanjeeviraja, K. Jeyadheepan, C. Gopalakrishnan, P. Sivaprakash, S. Arumugam, Brown coloration and electrochromic properties of nickel doped TiO2 thin films deposited by nebulized spray pyrolysis technique. Thin Solid Films 694, 137754 (2020). https://doi.org/10.1016/j.tsf.2019.137754

    Article  CAS  Google Scholar 

  27. C.H. Wang, X.T. Zhang, Y.A. Wei, L.N. Kong, F. Chang, H. Zheng, L.Z. Wu, J.F. Zhi, Y.C. Liu, Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2 (B) nanotube heterojunction. Dalton Trans. 29, 13331–13339 (2015). https://doi.org/10.1039/C5DT01860A

    Article  CAS  Google Scholar 

  28. H. Nagakawa, T. Ochiai, H. Ma, C.H. Wang, X.T. Zhang, Y. Shen, M. Takashima, B. Ohtani, M. Nagata, Elucidation of the electron energy structure of TiO2 (B) and anatase photocatalysts through analysis of electron trap density. RSC Adv. 31, 18496–18501 (2020). https://doi.org/10.1039/D0RA02587A

    Article  Google Scholar 

  29. T. Raguram, K.S. Rajni, Effect of Ni doping on the characterization of TiO2 nanoparticles for DSSC applications. J. Mater. Sci. Mater. Electron. 32, 18264–18281 (2011). https://doi.org/10.1007/s10854-021-06369-5

    Article  CAS  Google Scholar 

  30. J. Zhao, C. Liu, K. Qi, X.Q. Cui, Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. 28, 775–778 (2009). https://doi.org/10.1038/srep39695

    Article  CAS  Google Scholar 

  31. B. Sasi, K.G. Gopchandran, Nanostructured mesoporous nickel oxide thin films. Nanotechnology 18, 115613 (2007). https://doi.org/10.1088/0957-4484/18/11/115613

    Article  CAS  Google Scholar 

  32. J. Chen, Study on the preparation and properties of the modified TiO2. University of Science and Technology of China, 2017.

  33. R.A. Patil, R.S. Devan, J.-H. Lin, Y.-R. Ma, P.S. Patil, Y. Liou, Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods. Sol. Energy Mater. Sol. Cells 112, 91–96 (2013). https://doi.org/10.1016/j.solmat.2013.01.003

    Article  CAS  Google Scholar 

  34. J. Xiong, L.F. Xia, L. Yu, L. Zhang, C. Xu, S.Y. Chen, G.D. Jiang, L.Y. He, Y.K. Mishra, Electrochromic properties of nitrogen doped titanium dioxide films. Mater. Today Commun. 33, 104486 (2022). https://doi.org/10.1016/j.mtcomm.2022.104486

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Innovation and Entrepreneurship Training Program of Wuhan Institute of Technology (202110490002), the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (GCX2023005), the Key Technology Research and Development Program of Hubei Province (No. 2023BAB164). It is also supported by the Engineering Research Center of Phosphorous Resources Development and Utilization of Ministry of Education (LKF202205), Guangdong Provincial Key Laboratory of Distributed Energy Systems (2020B1212060075) and the Open Projects Foundation of State Key Laboratory of Special Surface Protection Materials and Application Technology.

Author information

Authors and Affiliations

Authors

Contributions

JY: investigation, writing—original draft preparation. LX: investigation, writing—original draft preparation. YW: data curation. ZL: data curation. YKM: writing—reviewing and editing, supervision. LH: conceptualization, funding acquisition, writing—reviewing and editing. JX: conceptualization, writing- reviewing and editing, funding acquisition.

Corresponding authors

Correspondence to Luying He or Jian Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Xia, L., Wu, Y. et al. High durable TiO2 electrochromic films by Ni doping. J Mater Sci: Mater Electron 35, 961 (2024). https://doi.org/10.1007/s10854-024-12729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12729-8

Navigation