Skip to main content
Log in

Efficient luminescence of Li+/Er3+ co-doped ytterbium silicate films and thermometric performance of Li+-doped erbium silicate films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Li+/Er3+ co-doped ytterbium silicate films with high near- infrared luminescence intensity and lifetime were prepared by RF magnetron sputtering. The excellent near-infrared luminescence performance of Li+/Er3+ doped ytterbium silicate films is mainly due to the doped lithium and ytterbium. The interstitial lithium in the crystal structure reduces the crystal field symmetry around erbium ions, and enhances the electron radiation transition rate. The ytterbium inhibits the interaction between erbium ions, and sensitizes erbium ions to enhance absorption. The efficient luminescent Li+/Er3+ co-doped ytterbium silicate films are expected to be apply for chip-scale silicon-based light source. Furthermore, we have found that Li+-doped erbium silicate film has strong up-conversion luminescence (UCL) intensity, due to the crystal field asymmetry around erbium ions caused by doped lithium. Therefore, we have prepared a remote optical temperature sensor with a high relative sensitivity of 17.6% K−1 at 80 K, based on the UCL of Li+-doped erbium silicate film. This result provides a method to improve the sensitivity of the optical thermometer by decreasing the crystal field symmetry arising from doping lithium. And it indicates erbium compounds as a very promising material for optical temperature sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Y. Fu, T. Sun, J. Li, Y. Tang, Y. Yang, S. Tao, F. Wang, D. Zhang, G. Qin, Z. Jia, D. Zhao, W. Qin, (S+C)-band polymer waveguide amplifier based on Tm3+ and Er3+ layer-doped core-shell nanoparticles. Opt. Lett. 48, 391–394 (2023)

    Article  CAS  PubMed  Google Scholar 

  2. Y. Zhou, Y. Zhu, Z. Fang, S. Yu, T. Huang, J. Zhou, R. Wu, J. Liu, Y. Ma, Z. Wang, J. Yu, Z. Liu, H. Zhang, Z. Wang, M. Wang, Y. Cheng, Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process. Laser Photonics Rev 17(4), 2200686 (2023)

    Article  CAS  Google Scholar 

  3. P. Pal, E. Kumi-Barimah, B. Dawson, G. Jose, Manufacturing of Er3+- doped planar waveguides on silica-on-silicon using femtosecond laser- induced plasma. Opt. Commun. 522, 128614 (2022)

    Article  CAS  Google Scholar 

  4. J. Renaudier, A. Napoli, M. Ionescu, C. Calo, G. Fiol, V. Mikhailov, W. Forysiak, N. Fontaine, F. Poletti, P. Poggiolini, Devices and Fibers for Ultrawideband Optical Communications. Proc. IEEE 110, 1742–1759 (2022)

    Article  CAS  Google Scholar 

  5. N. Javed, N.-L. Nguyen, S.F.A. Naqvi, J. Ha, Long-range wireless optical power transfer system using an EDFA. Opt. Expr. 30, 33767–33779 (2022)

    Article  CAS  Google Scholar 

  6. T. Xu, T. Gao, Y. Wang, W. Li, W. Li, C. Du, Z. Yang, Y. Liu, L. Zhang, High-gain integrated in-line few-mode amplifier enabling 3840- km long-haul transmission. Photonics Res. 10, 2794–2801 (2022)

    Article  Google Scholar 

  7. P. Xiao, B. Wang, Design of an erbium-doped Al2O3 optical waveguide amplifier with on-chip integrated laser pumping source. Opt. Commun. 508, 127709 (2022)

    Article  CAS  Google Scholar 

  8. M. Zhang, J. Lu, Y. Chen, Y. Wei, Y. Shao, Z. Li, F. Ma, S. Huang, Z. Li, Z. Chen, R. Wang, Z. Li, Study on Er3+-Yb3+ co-doped La2O3-Al2O3 glasses for C-band optical waveguide amplifier with high luminous efficiency and low pump threshold. Ceram. Int. 48, 32236–32240 (2022)

    Article  CAS  Google Scholar 

  9. L. Yin, H. Ning, S. Turkdogan, Z. Liu, P.L. Nichols, C.Z. Ning, Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4729412

    Article  Google Scholar 

  10. R. Serna, M.J. de Castro, J.A. Chaos, C.N. Afonso, I. Vickridge, The role of Er3+-Er3+ separation on the luminescence of Er-doped Al2O3 films prepared by pulsed laser deposition. Appl. Phys. Lett. 75, 4073–4075 (1999)

    Article  CAS  Google Scholar 

  11. M. Derouiche, R. Salhi, S. Baklouti, Efficient up-conversion ZnO co-doped (Er, Yb) nanopowders synthesized via the sol-gel process for photovoltaic applications. Materials 15, 7828 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N.M. Yusoff, M.A.W.A. Hadi, N.H.Z. Abidin, M.T. Alresheedi, C.S. Goh, M.A. Mahdi, Aluminum oxide/polydimethylsiloxane-based Q-switched mode-locked erbium-doped fiber laser. Optik 257, 168730 (2022)

    Article  CAS  Google Scholar 

  13. C. Ma, K. Liu, C. Ma, Y. Liu, Y. Xu, S. Yu, Absorption enhancement in visible range from Fano resonant silicon nanoparticle arrays embedded in single crystal Mg:Er:LiNbO3 synthesized by direct ion implantation. Nanotechnology (2022). https://doi.org/10.1088/1361-6528/ac7579

    Article  PubMed  Google Scholar 

  14. Y. Gao, Q. Fu, H. Shen, D. Li, D. Yang, Correlation of efficient luminescence with crystal structures of y-Er2Si2O7 and α-Er2Si2O7 in Er- doped silicon oxide films. J. Mater. Sci. 54, 12668–12675 (2019)

    Article  CAS  Google Scholar 

  15. Z. Min, H. Zhao, O.-Y. Yu, L. Li, Z. Chi, L. Yang, X. Wang, X. Zhuang, Controlled growth of single-crystalline erbium chloride silicate with long-lived fluorescence. Opt. Express 30, 16690–16698 (2022)

    Article  Google Scholar 

  16. F. Iacona, G. Franzo, M. Miritello, R. Lo Savio, E.F. Pecora, A. Irrera, F. Priolo, Er-based materials for Si microphotonics. Opt. Mater. 31, 1269–1274 (2009)

    Article  CAS  Google Scholar 

  17. H. Isshiki, T. Ushiyama, T. Kimura, Demonstration of ErSiO superlattice crystal waveguide toward optical amplifiers and emitters. Phys. Status Solidi a-Appl. Mater. Sci. 205, 52–55 (2008)

    Article  CAS  Google Scholar 

  18. D. Pugliese, N.G. Boetti, J. Lousteau, E. Ceci-Ginistrelli, E. Bertone, F. Geobaldo, D. Milanese, Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers. J. Alloys Compd. 657, 678–683 (2016)

    Article  CAS  Google Scholar 

  19. P.G. Kik, A. Polman, Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers. J. Appl. Phys. 93, 5008–5012 (2003)

    Article  CAS  Google Scholar 

  20. J. Zheng, Y. Tao, W. Wang, L. Zhang, Y. Zuo, C. Xue, B. Cheng, Q. Wang, Highly efficient 1.53 mu m luminescence in ErxYb2-xSi2O7 thin films grown on Si substrate. Mater. Lett. 65, 860–862 (2011)

    Article  CAS  Google Scholar 

  21. X.J. Wang, G. Yuan, H. Isshiki, T. Kimura, Z. Zhou, Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3446822

    Article  PubMed  PubMed Central  Google Scholar 

  22. X.J. Wang, M.K. Lei, T. Yang, B.S. Cao, Coherent effect of Er3+- Yb3+ co-doping on enhanced photoluminescence properties of Al2O3 powders by the sol-gel method. Opt. Mater. 26, 253–259 (2004)

    Article  CAS  Google Scholar 

  23. R. Guo, X. Wang, K. Zang, B. Wang, L. Wang, L. Gao, Z. Zhou, Optical amplification in Er/Yb silicate strip loaded waveguide. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3655330

    Article  PubMed  PubMed Central  Google Scholar 

  24. H. Shang, D. Yang, D. Li, Enhanced luminescence of erbium silicate: interstitial lithium directly regulates the lattice structure of erbium compound crystals. Nanoscale 14, 13824–13833 (2022)

    Article  CAS  PubMed  Google Scholar 

  25. S. Xu, J. Lei, L. Li, J. Chen, L. Chen, H. Guo, Dual-mode optical thermometry of Sr2YNbO6:Bi3+, Eu3+ phosphors designed by response surface methodology. J. Lumin. 255, 119615 (2023)

    Article  CAS  Google Scholar 

  26. Y. Jiang, Y. Tong, S. Chen, W. Zhang, F. Hu, R. Wei, H. Guo, A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6:Er3+, Yb3+phosphors. Chem. Eng. J. 413, 127470 (2021). https://doi.org/10.1016/j.cej.2020.127470

    Article  CAS  Google Scholar 

  27. L. Li, F. Qin, Y. Zhou, Y. Zheng, J. Miao, Z. Zhang, Photoluminescence and time -resolved -luminescence of CaWO4:Dy3+phosphors. J. Lumin. 224, 117308 (2020)

    Article  CAS  Google Scholar 

  28. R. An, Y. Liang, R. Deng, P. Lei, H. Zhang, Hollow nanoparticles synthesized via Ostwald ripening and their upconversion luminescence-mediated Boltzmann thermometry over a wide temperature range. Light-Sci. Appl. (2022). https://doi.org/10.1038/s41377-022-00867-9

    Article  PubMed  PubMed Central  Google Scholar 

  29. R. Liu, Z. Lei, R. Sun, S. Su, Y. Zou, L. Sun, J. Lu, C. Hu, B. Teng, S. Sun, D. Zhong, Broad-scope dual-mode modulation thermometry based on up-conversion phosphor GaNbO4: Yb3+/Er3+. Ceram. Int. 49, 11829–11836 (2023). https://doi.org/10.1016/j.ceramint.2022.12.029

    Article  CAS  Google Scholar 

  30. M. Li, L. Su, X. Chen, Q. Wu, B. Zhang, Effect of Yb3+ concentration on Er3+ doped CaF2 single crystal for temperature sensor applications. Opt. Commun. 520, 128488 (2022). https://doi.org/10.1016/j.optcom.2022.128488

    Article  CAS  Google Scholar 

  31. Q. Dou, Y. Zhang, Tuning of the structure and emission spectra of upconversion nanocrystals by alkali ion doping. Langmuir 27, 13236–13241 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. J.L. Stokes, B.J. Harder, V.L. Wiesner, D.E. Wolfe, Crystal structures and thermal expansion of Yb2Si2O7-Gd2Si2O7 solid solutions. J. Solid State Chem. 312, 123166 (2022)

    Article  CAS  Google Scholar 

  33. Y. Gao, H. Shen, J. Cao, D. Li, D. Yang, Control of the formation and luminescent properties of polymorphic erbium silicates on silicon. Opt. Mater. Exp. 9, 1716–1727 (2019)

    Article  CAS  Google Scholar 

  34. S.U. Awan, S.K. Hasanain, M.F. Bertino, G.H. Jaffari, Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4767364

    Article  Google Scholar 

  35. R.J. Iwanowski, M. Heinonen, I. Pracka, J. Kachniarz, X-ray photoelectron spectra of crystalline LiNbO3: (Er, Yb). Appl. Surf. Sci. 136, 95–98 (1998)

    Article  CAS  Google Scholar 

  36. M.D. Wisser, M. Chea, Y. Lin, D.M. Wu, W.L. Mao, A. Salleo, J.A. Dionne, Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. Nano Lett. 15, 1891–1897 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. F. Huang, L. Hu, D. Chen, NIR to visible up conversion in Er3+- doped fluoride glass under 1550 and 980 nm excitations. Ceram. Int. 41, 189–193 (2015)

    Article  CAS  Google Scholar 

  38. M. Erdem, B. Sitt, Up conversion based white light emission from sol-gel derived α-Y2Si2O7 nanoparticles activated with Y3+, Er3+ ions. Opt. Mater. 46, 260–264 (2015)

    Article  CAS  Google Scholar 

  39. W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, Y. Zhao, Enhanced red emission from GdF3:Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging. Chem.-a Eur. J. 18, 9239–9245 (2012)

    Article  CAS  Google Scholar 

  40. G. Chen, H. Liu, H. Liang, G. Somesfalean, Z. Zhang, Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 112, 12030–12036 (2008)

    Article  CAS  Google Scholar 

  41. M.T. Abbas, N.Z. Khan, J. Mao, L. Qiu, X. Wei, Y. Chen, S.A. Khan, Lanthanide and transition metals doped materials for non-contact optical thermometry with promising approaches. Mater. Today Chem. 24, 100903 (2022)

    Article  CAS  Google Scholar 

  42. F. Chi, F. Hu, X. Wei, Y. Chen, M. Yin, Synthesis and thermometric properties of Yb3+-Er3+ co-doped K2GdF5 up-conversion phosphors. J. Rare Earths 35, 436–440 (2017)

    Article  CAS  Google Scholar 

  43. B. Hu, H. Zhang, L. He, D. Wang, Upconversion Luminescence and Temperature Sensing Properties of Er3+/Yb3+-Doped α-BiNbO4 Phosphor. J. Electron. Mater. 52, 3386–3393 (2023. https://doi.org/10.1007/s11664-023-10315-y)

    Article  CAS  Google Scholar 

  44. Z. Wang, F. Zhang, O.I. Datsenko, S. Golovynskyi, Z. Sun, B. Li, H. Wu, High-sensitive optical thermometry via thermally coupled levels of Er in AlN thin film. J. Alloy. Compd. 946, 169350 (2023). https://doi.org/10.1016/j.jallcom.2023.169350

    Article  CAS  Google Scholar 

  45. Z. Wang, R. Liu, Y. Yin, C. Dou, C. Hu, Y. Wang, W. Teng, Q. Niu, J. Zhu, F. Zheng, Y. Che, J. Li, S. Sun, B. Teng, D. Zhong, High sensitivity thermometry using Yb3+/Er3+co-doped LuNbO4 nanoparticles over a wide temperature range. J. Phys. Chem. Solids 165, 110658 (2022). https://doi.org/10.1016/j.jpcs.2022.110658

    Article  CAS  Google Scholar 

  46. J. Wang, H. Lin, Y. Cheng, X. Cui, Y. Gao, Z. Ji, J. Xu, Y. Wang, A novel high-sensitive upconversion thermometry strategy: Utilizing synergistic effect of dual-wavelength lasers excitation to manipulate electron thermal distribution. Sensors and Actuators B-Chemical. 278, 165–171 (2019). https://doi.org/10.1016/j.snb.2018.09.086

    Article  CAS  Google Scholar 

  47. Q. Meng, T. Liu, J. Dai, W. Sun, Study on optical temperature sensing properties of YVO4:Er3+, Yb3+ nanocrystals. J. Lumin. 179, 633–638 (2016). https://doi.org/10.1016/j.jlumin.2016.07.002

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 61874095, 61721005).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology, Validation, Formal analysis, Investigation, Data curation, Writing—original draft and Visualization were performed by [Huabao Shang]. Supervision, Resources, Writing—review & editing, Funding acquisition were performed by [Deren Yang], [Dongsheng Li].

Corresponding author

Correspondence to Dongsheng Li.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Yang, D. & Li, D. Efficient luminescence of Li+/Er3+ co-doped ytterbium silicate films and thermometric performance of Li+-doped erbium silicate films. J Mater Sci: Mater Electron 35, 963 (2024). https://doi.org/10.1007/s10854-024-12726-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12726-x

Navigation