Skip to main content
Log in

Molecular adsorption behavior of O2 molecules on Ni2+ doped TiO2 (001) crystal plane

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The adsorption of Ni2+ doped TiO2 (001) crystal plane for different gas molecules is studied by combining theory with experiment. The results show that O2 molecules are adsorbed on crystal plane in the form of chemical bond. XPS results prove that the doping of Ni2+ increases the chemisorbed oxygen ability of crystal plane. The adsorption of O2 molecules leads to the increase of the crystal plane conductivity, which is confirmed by the simulation results of the increase of Fermi level DOS and the electrochemical impedance spectroscopy (EIS) experiment. H2O and N2 molecules are adsorbed by crystal plane in the form of hydrogen bond and physical adsorption, respectively, and their contributions to the crystal plane conductivity increase and decrease respectively, which is also confirmed by EIS under different atmospheres. Interestingly, small-angle XRD proves that the sample exists interlayer clearance, and the adsorption of gas molecules in the crystal surface gap further improves the storage capacity of TiO2 materials for gas molecules. The results of this study are of great significance for improving the oxygen carrying capacity and catalytic gas sensitive performance of TiO2 materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W. Zeng, T. Liu, Z. Wang, Impact of nb doping on gas-sensing performance of TiO2 thick-film sensors. Sens. Actuators B 166–167, 141–149 (2012). https://doi.org/10.1016/j.snb.2012.02.016

    Article  CAS  Google Scholar 

  2. R. Panta, C. Nanthamathee, V. Ruangpornvisuti, Adsorption of hydrogen and hydrogen–containing gases on pd– and ag–single atoms doped on anatase TiO2 (1 0 1) surfaces and their sensing performance. Appl. Surf. Sci. 450, 112–121 (2018). https://doi.org/10.1016/j.apsusc.2018.04.165

    Article  CAS  Google Scholar 

  3. S. Li, X. Wei, S. Zhu, Q. Zhou, Y. Gui, Low temperature carbon monoxide gas sensor based on Co3O4@TiO2 nanocomposites: Theoretical and experimental analysis. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160710

    Article  Google Scholar 

  4. Z. Cao, W. Li, Q. Yao, H. Zhang, G. Wei, Platinum-doped anatase (101) surface as promising gas-sensor materials for HF, CS2, and COF2: a density functional theory study. ACS Omega 6, 696–701 (2021). https://doi.org/10.1021/acsomega.0c05235

    Article  CAS  PubMed  Google Scholar 

  5. M. Zhang, T. Xue, S. Xu, Z. Li, Y. Yan, Y. Huang, Adverse effect of substrate surface impurities on O2 sensing properties of TiO2 gas sensor operating at high temperature. Ceram. Int. 43, 5842–5846 (2017). https://doi.org/10.1016/j.ceramint.2017.01.130

    Article  CAS  Google Scholar 

  6. B. Sharma, A. Sharma, J.-H. Myung, Highly selective detection of acetone by TiO2-SnO2 heterostructures for environmental biomarkers of diabetes. Sens. Actuators B (2021). https://doi.org/10.1016/j.snb.2021.130733

    Article  Google Scholar 

  7. D. Mardare, N. Cornei, C. Mita, D. Florea, A. Stancu, V. Tiron, A. Manole, C. Adomnitei, Low temperature TiO2 based gas sensors for CO2. Ceram. Int. 42, 7353–7359 (2016). https://doi.org/10.1016/j.ceramint.2016.01.137

    Article  CAS  Google Scholar 

  8. N.E. Stankova, I.G. Dimitrov, T.R. Stoyanchov, P.A. Atanasov, Optical and gas sensing properties of thick TiO2 films grown by laser deposition. Appl. Surf. Sci. 254, 1268–1272 (2007). https://doi.org/10.1016/j.apsusc.2007.08.057

    Article  CAS  Google Scholar 

  9. W.-T. Moon, K.-S. Lee, Y.-K. Jun, H.-S. Kim, S.-H. Hong, Orientation dependence of gas sensing properties of TiO2 films. Sens. Actuators B 115, 123–127 (2006). https://doi.org/10.1016/j.snb.2005.08.024

    Article  CAS  Google Scholar 

  10. Y. Gui, W. Li, X. He, Z. Ding, C. Tang, L. Xu, Adsorption properties of pristine and co-doped TiO2 (1 0 1) toward dissolved gas analysis in transformer oil. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.145163

    Article  Google Scholar 

  11. L. Lin, Z. Shi, J. Huang, P. Wang, W. Yu, C. He, Z. Zhang, Zhang, Molecular adsorption properties of ch4 with noble metals doped onto oxygen vacancy defect of anatase TiO2 (1 0 1) surface: First-principles calculations. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145900

    Article  Google Scholar 

  12. L. Xu, W. Chen, Y. Gui, Q. Li, Influence of pd clusters doping on gas sensing properties of TiO2 (101) nanotubes to SF6 decomposition products. IEEE Access 8, 205282–205288 (2020). https://doi.org/10.1109/access.2020.3036526

    Article  Google Scholar 

  13. Y. Chen, L. Yu, H. Du, C. Hu, N. Liu, S. Ma, Y. Jia, X. Fan, Hierarchical flower-like TiO2 microspheres for high-selective NH3 detection: a density functional theory study. Sens. Actuators B (2021). https://doi.org/10.1016/j.snb.2021.130303

    Article  Google Scholar 

  14. D. Mardare, N. Iftimie, M. Crişan, M. Răileanu, A. Yildiz, T. Coman, K. Pomoni, A. Vomvas, Electrical conduction mechanism and gas sensing properties of pd-doped TiO2 films. J. Non-Cryst. Solids 357, 1774–1779 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.01.035

    Article  CAS  Google Scholar 

  15. I. Alessandri, E. Comini, E. Bontempi, G. Faglia, L.E. Depero, G. Sberveglieri, Cr-inserted TiO2 thin films for chemical gas sensors. Sens. Actuators B 128, 312–319 (2007). https://doi.org/10.1016/j.snb.2007.06.020

    Article  CAS  Google Scholar 

  16. D. Mardare, C. Adomnitei, D. Florea, D. Luca, A. Yildiz, The effect of CO2 gas adsorption on the electrical properties of fe doped TiO2 films. Phys. B 524, 17–21 (2017). https://doi.org/10.1016/j.physb.2017.08.029

    Article  CAS  Google Scholar 

  17. V. Galstyan, A. Ponzoni, I. Kholmanov, M.M. Natile, E. Comini, S. Nematov, G. Sberveglieri, Investigation of reduced graphene oxide and a Nb-doped TiO2 nanotube hybrid structure to improve the gas-sensing response and selectivity. ACS Sens. 4, 2094–2100 (2019). https://doi.org/10.1021/acssensors.9b00772

    Article  CAS  PubMed  Google Scholar 

  18. A. Abbasi, J.J. Sardroodi, Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by dft computations: applications to gas sensor devices. Appl. Surf. Sci. 436, 27–41 (2018). https://doi.org/10.1016/j.apsusc.2017.12.010

    Article  CAS  Google Scholar 

  19. X. Zhang, J. Zhang, H. Cui, Adsorption mechanism of SF6 decomposition components onto n, f-co-doped TiO2: a DFT study. J. Fluorine Chem. 213, 18–23 (2018). https://doi.org/10.1016/j.jfluchem.2018.05.014

    Article  CAS  Google Scholar 

  20. J. Ma, F. Zhu, P. Ji, Q. Zou, H. Wang, G. Xu, Enhanced visible-light photocatalytic performance of Co/Ni doped Cu2MoS4 nanosheets for rhodamine b and erythromycin degradation. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.158612

    Article  Google Scholar 

  21. A. Zhang, Z. Nan, Investigation on flower-shaped Ni-doped Fe3O4/SnS2 formation mechanism through a microcalorimetric method and catalytic property as a fenton-like catalyst. J. Therm. Anal. Calorim. 139, 217–223 (2019). https://doi.org/10.1007/s10973-019-08432-0

    Article  CAS  Google Scholar 

  22. S. Sampath, S. Dharmar, K. Chinnasamy, G. Bangaru, M. Sankar, S. Gedi, M. Shkir, M.A. Manthrammel, Improved ethanol sensing and photocatalytic rhodamine b dye degradation of Ni-SnO2 nanoparticles. Mater. Sci. Eng. B (2023). https://doi.org/10.1016/j.mseb.2022.116091

    Article  Google Scholar 

  23. J. Fang, Z. Li, X. Bai, Y. Zhang, J. Liu, D. Wang, Y. Yao, Co2+ doping and molecular adsorption behavior of anatase TiO2 (001) crystal plane. Catal. Res. 2, 1–1 (2022). https://doi.org/10.21926/cr.2203018

    Article  Google Scholar 

  24. C. Shao, L. Lin, L. Duan, Y. Jiang, Q. Shao, H. Cao, Nickel-enhanced electrochemical activities of shape-tailored TiO2{001} nanocrystals for water treatment: a combined experimental and DFT studies. Electrochim. Acta (2021). https://doi.org/10.1016/j.electacta.2021.138066

    Article  Google Scholar 

  25. J. Sun, J. Sun, X. Wang, Anatase TiO2 with Co-exposed (001) and (101) surface-based photocatalytic materials for energy conversion and environmental purification. Chem. Asian J. 15, 4168–4183 (2020). https://doi.org/10.1002/asia.202001085

    Article  CAS  PubMed  Google Scholar 

  26. L.A. Dissado, R.M. Hill, Constant-phase-angle and power-law regimes in the frequency response of a general determinate fractal circuit. Phys. Rev. B 37, 3434–3439 (1988). https://doi.org/10.1103/PhysRevB.37.3434

    Article  CAS  Google Scholar 

  27. I. Nam, H. Son, Y. Choi, Colorimetric oxygen sensor based on nano-sized black TiO2 catalysts: DFT modeling and experiments. Mol. Catal. 459, 16–20 (2018). https://doi.org/10.1016/j.mcat.2018.08.015

    Article  CAS  Google Scholar 

  28. K. Tada, H. Koga, A. Hayashi, Y. Kondo, T. Kawakami, S. Yamanaka, M. Okumura, Effects of halogens on interactions between a reduced TiO2 (110) surface and noble metal atoms: a DFTt study. Appl. Surf. Sci. 411, 149–162 (2017). https://doi.org/10.1016/j.apsusc.2017.03.113

    Article  CAS  Google Scholar 

  29. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992). https://doi.org/10.1103/physrevb.46.6671

    Article  CAS  Google Scholar 

  30. J.A. White, D.M. Bird, Implementation of gradient-corrected exchange-correlation potentials in car-parrinello total-energy calculations. Phys. Rev. B 50, 4954–4957 (1994). https://doi.org/10.1103/physrevb.50.4954

    Article  CAS  Google Scholar 

  31. Y. Liang, Y. Yang, H. Zhou, C. Zou, K. Xu, X. Luo, T. Yu, W. Zhang, Y. Liu, C. Yuan, A systematic study on the crystal facets-dependent gas sensing properties of anatase TiO2 with designed {010}, {101} and {001} facets. Ceram. Int. 45, 6282–6290 (2019). https://doi.org/10.1016/j.ceramint.2018.12.110

    Article  CAS  Google Scholar 

  32. A. Achour, M. Islam, S. Solaymani, S. Vizireanu, K. Saeed, G. Dinescu, Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films. Appl. Surf. Sci. 458, 678–685 (2018). https://doi.org/10.1016/j.apsusc.2018.07.145

    Article  CAS  Google Scholar 

  33. Y. Lin, Y. Zhu, X. Pan, X. Bao, Modulating the methanation activity of Ni by the crystal phase of TiO2. Catal. Sci. Technol. 7, 2813–2818 (2017). https://doi.org/10.1039/c7cy00124j

    Article  CAS  Google Scholar 

  34. R. Khan, T.J. Kim, Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. J. Hazard. Mater. 163, 1179–1184 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.078

    Article  CAS  PubMed  Google Scholar 

  35. F. Guo, C. Feng, Z. Zhang, L. Zhang, C. Xu, C. Zhang, S. Lin, H. Wu, B. Zhang, A. Tabusi, Y. Huang, A room-temperature NO2 sensor based on Ti3C2Tx mxene modified with sphere-like CuO. Sens. Actuators B (2023). https://doi.org/10.1016/j.snb.2022.132885

    Article  Google Scholar 

  36. V. Senthilkumar, A. Kathalingam, V. Kannan, K. Senthil, J.-K. Rhee, Reproducible resistive switching in hydrothermal processed TiO2 nanorod film for non-volatile memory applications. Sens. Actuators. A 194, 135–139 (2013). https://doi.org/10.1016/j.sna.2013.02.009

    Article  CAS  Google Scholar 

  37. D.A. Panayotov, J.T. Yates, Depletion of conduction band electrons in TiO2 by water chemisorption—IR spectroscopic studies of the independence of Ti–OH frequencies on electron concentration. Chem. Phys. Lett. 410, 11–17 (2005). https://doi.org/10.1016/j.cplett.2005.03.146

    Article  CAS  Google Scholar 

  38. D.D. Miller, R. Siriwardane, T. Simonyi, Theoretical and experimental analysis of oxygen separation from air over Ni-transition metal complexes. Energy Fuels 25, 4261–4270 (2011). https://doi.org/10.1021/ef200779m

    Article  CAS  Google Scholar 

  39. G. Marcı̀, M. Addamo, V. Augugliaro, S. Coluccia, E. Garcı́a-López, V. Loddo, G. Martra, L. Palmisano, M. Schiavello, Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J. Photochem. Photobiol. A 160, 105–114 (2003). https://doi.org/10.1016/s1010-6030(03)00228-4

    Article  Google Scholar 

  40. R. Liu, J. Liu, J. Fang, X. Bai, D. Wang, Y. Qie, S. Zu, G. Wang, X. Sui, R. Chang, Y. Wang, Z. Li, Remodeling and adsorption behavior of Co2+-doped SnO2 (221) crystal plane by H2O molecules. Comput. Theor. Chem. (2024). https://doi.org/10.1016/j.comptc.2023.114404

    Article  Google Scholar 

  41. J. Liu, Z. Li, H. Li, Y. Zhang, C. Yang, X. Wang, H. Liang, J. Song, X. Zhang, H. Sun, Y. Zhang, Examining the photoelectric properties of hexagonal prism-shaped ZnO based on density functional theory. J. Phys. Chem. Solids (2022). https://doi.org/10.1016/j.jpcs.2022.110947

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “the Fundamental Research Funds for the Central Universities”. Part of the test was supported by the "Instrument Equipment Sharing Platform of the College of Physics of Jilin University"

Author information

Authors and Affiliations

Authors

Contributions

Jiarui Fang: Conceptualization, Methodology, Software, Investigation, Data curation, Supervision, Writing-Original draft preparation. Ziheng Li*: Supervision, Software. Xiruo Bai, Run Liu: Visualization, Validation, Writing-Reviewing and Resources.Dan Wang, Yixuan Qie: Validation, Writing-Reviewing and Editing.

Corresponding author

Correspondence to Ziheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Li, Z., Bai, X. et al. Molecular adsorption behavior of O2 molecules on Ni2+ doped TiO2 (001) crystal plane. J Mater Sci: Mater Electron 35, 981 (2024). https://doi.org/10.1007/s10854-024-12723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12723-0

Navigation