Skip to main content
Log in

Investigation on phase composition and microwave dielectric properties of MgO-SiO2-TiO2 system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microwave dielectric properties of MgO-SiO2-TiO2 system were investigated through the solid sintering method. A detailed analysis was conducted to investigate the effects of SiO2 content and holding time on the phase composition, microstructure, sintering characteristics and dielectric properties of MgO-SiO2-TiO2 ceramics. In this study, it was discovered that for all compositions, a three-phase composite of Mg2SiO4, Mg2TiO4 and MgO was observed. Furthermore, as the SiO2 content increased, there was a gradual increase in the amount of Mg2SiO4 phase, while the amounts of Mg2TiO4 and MgO phases decreased. Although holding time did not change the phase type, it influenced the intensity of diffraction peaks of each phase. The variation of holding time affected reaction efficiency and crystallization behavior of the samples. The MgO-SiO2-TiO2 system exhibited wide tunability in terms of dielectric constants, and higher quality factors were observed at lower dielectric constant values. The MgO-SiO2-TiO2 system, composed of 50.44 wt% MgO, 30.28 wt% SiO2 and 14.28 wt% TiO2, were sintered at 1500 ℃ for 2 h. Remarkable dielectric properties were achieved, with the dielectric constant measured at 7.7, the quality factor recorded as 89,798 GHz (11 GHz), and the temperature coefficient of the resonant frequency calculated as − 32.5 ppm/℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. S.B. Roshni, S. Arun, M.T. Sebastian, P. Mohanan, K.P. Surendran, Low κ mg2sio4 ceramic tapes and their role as screen printed microstrip patch antenna substrates. Mater. Sci. Eng. B 264, 114947 (2021). https://doi.org/10.1016/j.mseb.2020.114947

    Article  CAS  Google Scholar 

  2. H. Yang, S. Zhang, Q. Wen, Y. Yuan, E. Li, Synthesis of CaAl2B2O4+3: novel microwave dielectric ceramics with low permittivity and low loss. J. Eur. Ceram. Soc. 41, 2596–2601 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.12.038

    Article  CAS  Google Scholar 

  3. Z. Tan, K. Song, H.B. Bafrooei, B. Liu, J. Wu, J. Xu, H. Lin, D. Wang, The effects of tio2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5g application. Ceram. Int. 46, 15665–15669 (2020). https://doi.org/10.1016/j.ceramint.2020.03.116

    Article  CAS  Google Scholar 

  4. Y. Fang, L. Li, Q. Xiao, X.M. Chen, Preparation and microwave dielectric properties of cristobalite ceramics. Ceram. Int. 38, 4511–4515 (2012). https://doi.org/10.1016/j.ceramint.2012.02.027

    Article  CAS  Google Scholar 

  5. C. Huang, K. Chiang, Structures and dielectric properties of a new dielectric material system xMgTiO3–(1–x)MgTa2O6 at microwave frequency. J. Alloy. Compd. 431, 326–330 (2007). https://doi.org/10.1016/j.jallcom.2006.05.088

    Article  CAS  Google Scholar 

  6. X. Dong, C. Sun, H. Yang, L. Yang, S. Zhang, Influence of mg2sio4 addition on crystal structure and microwave properties of mg2al4si5o18 ceramic system. Journal of Materials Science. Mater. Electron. 29, 17967–17973 (2018). https://doi.org/10.1007/s10854-018-9912-4

    Article  CAS  Google Scholar 

  7. C. Li, S. Ding, T. Song, Y. Zhang, H. Zhu, Structure and microwave dielectric properties of baal2−2li2si2o8–2 ceramics. Ceram. Int. 47, 4895–4904 (2021). https://doi.org/10.1016/j.ceramint.2020.10.062

    Article  CAS  Google Scholar 

  8. A. Kan, R. Hirabayashi, S. Takahashi, H. Ogawa, Low-temperature crystallization and microwave dielectric properties of forsterite generated in MgO–SiO2 system following LiF addition. Ceram. Int. 49, 9883–9892 (2023). https://doi.org/10.1016/j.ceramint.2022.11.163

    Article  CAS  Google Scholar 

  9. L. Li, X.M. Chen, X.C. Fan, Microwave dielectric characteristics and finite element analysis of MgTiO3–CaTiO3 layered dielectric resonators. J. Eur. Ceram. Soc. 26, 3265–3271 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.08.007

    Article  CAS  Google Scholar 

  10. H. Ohsato, J. Varghese, A. Kan, J.S. Kim, I. Kagomiya, H. Ogawa, M.T. Sebastian, H. Jantunen, Volume crystallization and microwave dielectric properties of indialite/cordierite glass by TiO2 addition. Ceram. Int. 47, 2735–2742 (2021). https://doi.org/10.1016/j.ceramint.2020.09.126

    Article  CAS  Google Scholar 

  11. X. Yan, Y. Liu, C. Tang, S. Liu, W. Ge, J. Tong, F. Meng, Microwave dielectric properties of Mg2SiO4–Ca1−ySm2y/3TiO3 composite ceramics. J. Mater. Sci. Mater. Electron. 33, 19751–19758 (2022). https://doi.org/10.1007/s10854-022-08757-x

    Article  CAS  Google Scholar 

  12. B. Jeong, M. Joung, S. Kweon, J. Kim, S. Nahm, J. Choi, S. Hwang, Effect of Bi2O3 doping on the sintering temperature and microwave dielectric properties of lialsio4 ceramics. J. Am. Ceram. Soc. 95, 1811–1813 (2012). https://doi.org/10.1111/j.1551-2916.2012.05222.x

    Article  CAS  Google Scholar 

  13. Y. Lai, Y. Zeng, J. Han, X. Liang, X. Zhong, M. Liu, B. Duo, H. Su, Structure dependence of microwave dielectric properties in Zn2-SiO4–xCuO ceramics. J. Eur. Ceram. Soc. 41, 2602–2609 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.12.013

    Article  CAS  Google Scholar 

  14. W. Lou, K. Song, F. Hussain, A. Khesro, J. Zhao, H.B. Bafrooei, T. Zhou, B. Liu, M. Mao, K. Xu, E. Taheri-Nassaj, D. Zhou, S. Luo, S. Sun, H. Lin, D. Wang, Microwave dielectric properties of Mg1.8R0.2Al4Si5O18 (R = Mg, Ca, Sr, Ba, Mn Co, Ni, Cu, Zn) cordierite ceramics and their application for 5g microstrip patch antenna. J. Eur. Ceram. Soc. 42, 2254–2260 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.12.050

    Article  CAS  Google Scholar 

  15. X. Zhao, M. Wang, Q. Zhang, H. Yang, L. Hu, D. Yu, Improving sintering characteristic and dielectric properties of kermanite (Ca2MgSi2O7) ceramics by Bi2O3–B2O3 addition. Mater. Lett. 122, 9–12 (2014). https://doi.org/10.1016/j.matlet.2014.02.011

    Article  CAS  Google Scholar 

  16. L. Liu, Y. Feng, T. Qiu, X. Li, Microstructures and microwave dielectric properties of Mg2SiO4–Ca0.9Sr0.1TiO3 ceramics. J. Mater. Sci. Mater. Electron. 26, 1316–1321 (2015). https://doi.org/10.1007/s10854-014-2540-8

    Article  CAS  Google Scholar 

  17. Z. Cheng, X. Hu, Y. Li, Z. Ling, Fabrication and microwave dielectric properties of Mg2SiO4-LiMgPO4-TiO2 composite ceramics. J. Am. Ceram. Soc. 99, 2688–2692 (2016). https://doi.org/10.1111/jace.14276

    Article  CAS  Google Scholar 

  18. M. Chen, X. Wan, J. Shi, P. Taskinen, A. Jokilaakso, Experimental study on the phase relations of the SiO2-MgO-TiO2 system in air at 1500 °c. Jom 74, 676–688 (2022). https://doi.org/10.1007/s11837-021-04870-0

    Article  CAS  Google Scholar 

  19. O.V. Ovchar, O.I. V’Yunov, D.A. Durilin, Y.D. Stupin, A.G. Belous, Synthesis and microwave dielectric properties of MgO–TiO2 –SiO2 ceramics. Inorg. Mater. 40, 1116–1121 (2004). https://doi.org/10.1023/B:INMA.0000046480.92052.aa

    Article  CAS  Google Scholar 

  20. X. Yang, Y. Lai, Y. Zeng, F. Yang, F. Huang, B. Li, F. Wang, C. Wu, H. Su, Spinel-type solid solution ceramic MgAl2O4-Mg2TiO4 with excellent microwave dielectric properties. J. Alloy. Compd. 898, 162905 (2022). https://doi.org/10.1016/j.jallcom.2021.162905

    Article  CAS  Google Scholar 

  21. J. Song, K. Song, J. Wei, H. Lin, J. Wu, J. Xu, W. Su, Z. Cheng, Ionic occupation, structures, and microwave dielectric properties of Y3MgAl3SiO12 garnet-type ceramics. J. Am. Ceram. Soc. 101, 244–251 (2018). https://doi.org/10.1111/jace.15174

    Article  CAS  Google Scholar 

  22. E. Li, H. Yang, H. Yang, S. Zhang, Effects of li2o-b2o3-sio2 glass on the low-temperature sintering of Zn0.15Nb0.3Ti0.55O2 ceramics. Ceram. Int. 44, 8072–8080 (2018). https://doi.org/10.1016/j.ceramint.2018.01.249

    Article  CAS  Google Scholar 

  23. T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian, Forsterite-based ceramic–glass composites for substrate applications in microwave and millimeter wave communications. J. Alloy. Compd. 461, 555–559 (2008). https://doi.org/10.1016/j.jallcom.2007.07.084

    Article  CAS  Google Scholar 

  24. T. Qin, C. Zhong, Y. Qin, B. Tang, S. Zhang, The structure evolution and microwave dielectric properties of MgAl2-x(Mg0·5Ti0.5)xO solid solutions. Ceram. Int. 46, 19046–19051 (2020). https://doi.org/10.1016/j.ceramint.2020.04.236

    Article  CAS  Google Scholar 

  25. H. Yang, E. Li, C. Sun, S. Duan, Y. Yuan, B. Tang, The influence of sintering temperature on the microwave dielectric properties of Mg2SiO4 ceramics with Cao-B2O3-SiO2 addition. J. Electron. Mater. 46, 1048–1054 (2017). https://doi.org/10.1007/s11664-016-5046-8

    Article  CAS  Google Scholar 

  26. R. Xiang, H. Li, P. Zhang, X. Chen, H. Hu, Q. Wen, S. Liu, Crystal structure and microwave dielectric properties of Mg2Ti1-xGa4/3xO4 (0.05 ≤ x ≤ 0.13) ceramics. Ceram. Int. 47, 8447–8452 (2021). https://doi.org/10.1016/j.ceramint.2020.11.210

    Article  CAS  Google Scholar 

  27. X. Zhu, F. Kong, X. Ma, Sintering behavior and properties of MgTiO3/CaO-B2O3-SiO2 ceramic composites for ltcc applications. Ceram. Int. 45, 1940–1945 (2019). https://doi.org/10.1016/j.ceramint.2018.10.086

    Article  CAS  Google Scholar 

  28. H. Yang, S. Zhang, H. Yang, X. Zhang, E. Li, Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4-(1–x)Zn0.15Nb0.3Ti0.55O2 ceramics. Inorg. Chem. 57, 8264–8275 (2018). https://doi.org/10.1021/acs.inorgchem.8b00873

    Article  CAS  PubMed  Google Scholar 

  29. I.J. Induja, M.R. Varma, M.T. Sebastian, Mineral sillimanite-based hard substrates for htcc applications. J. Electron. Mater. 47, 6171–6176 (2018). https://doi.org/10.1007/s11664-018-6521-1

    Article  CAS  Google Scholar 

  30. T.L. Sun, X.M. Chen, Raman spectra analysis for Ba[(Mg1-xNix)1/3Nb2/3]O3 microwave dielectric ceramics. Aip Adv. (2015). https://doi.org/10.1063/1.4905740

    Article  Google Scholar 

Download references

Funding

This study was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites; the National Natural Science Foundation of China (Grant No. 52102089); and the Key Research and Development Program of Zhejiang Province (Grant No. 2020C0112; 2021C01092).

Author information

Authors and Affiliations

Authors

Contributions

Yiting Shan contributed to the conception of this study, performed the experiment, analyzed the data and wrote the manuscript. Yang Lu helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Hongqing Zhou.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Y., Lu, Y. & Zhou, H. Investigation on phase composition and microwave dielectric properties of MgO-SiO2-TiO2 system. J Mater Sci: Mater Electron 35, 979 (2024). https://doi.org/10.1007/s10854-024-12722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12722-1

Navigation