Skip to main content
Log in

Exploring hydrogen evolution in perovskite LaFeO3 and composites with spinel ferrite CoFe2O4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Most of the world's hydrogen is now being produced by the gasification of coal and steam methane that produces hazardous gases like CO2, CO, etc. To find the green solution for hydrogen generation, the present work deals with the synthesis of eco-friendly catalyst based on perovskite oxides LaFeO3 (LFO) and spinel oxide CoFe2O4 (CFO) composites to drive hydrogen evolution reaction (HER). The effect of magnetic character on hydrogen evolution reaction (HER) activity has been evaluated in 0.5 M H2SO4. The composite samples show high catalytic activity with low onset potentials. They Tafel slope values at 10 mA/cm2 for LFO and LFO- CFO composites with 70:30 and 60:40 ratio are found to be 37.38, 41.74 and 77.14 mV dec−1. LFO shows efficient hydrogen production at small value of overpotential at a higher kinetic reaction rate. EIS reveals the kinetics of the catalyst with respect to the Tafel slope values. The anisotropy constant for LFO–CFO (60/40) sample is obtained to be 86 times higher than LFO. Thus, presented work provides not only an opportunity to better understand the catalytic mechanism, but also a guide HER activity through magnetic-compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. U. Lucia, Overview on fuel cells. Renew. Sustain. Energy Rev. 30, 164–169 (2014). https://doi.org/10.1016/j.rser.2013.09.025

    Article  CAS  Google Scholar 

  2. H.J. Alves, C. Bley Junior, R.R. Niklevicz, E.P. Frigo, M.S. Frigo, C.H. Coimbra-Araújo, Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int. J. Hydrogen Energy 38, 5215–5225 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.057

    Article  CAS  Google Scholar 

  3. J. Pani, D. Maru, P. Chaudhary, J. Gangwar, K.U. Kumar, B.C. Yadav, H. Borkar, Improved supercapacitor performance with enhanced interlayer spacing of nanoflower MoS2 in long discharge time in LED-glowing application. Energy Technol. 2300193, 1–11 (2023). https://doi.org/10.1002/ente.202300193

    Article  CAS  Google Scholar 

  4. M. Schalenbach, A.R. Zeradjanin, O. Kasian, S. Cherevko, K.J.J. Mayrhofer, A perspective on low-temperature water electrolysis—challenges in alkaline and acidic technology. Int. J. Electrochem. Sci. 13, 1173–1226 (2018). https://doi.org/10.20964/2018.02.26

    Article  CAS  Google Scholar 

  5. Z. Yu, Y. Duan, X. Feng, X. Yu, M. Gao, S. Yu, Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future. Prospects 2007100, 1–35 (2021). https://doi.org/10.1002/adma.202007100

    Article  CAS  Google Scholar 

  6. M. Farghali, A.I. Osman, I.M.A. Mohamed, Z. Chen, L. Chen, I. Ihara, Strategies to save energy in the context of the energy crisis: a review (Springer, Berlin, 2023). https://doi.org/10.1007/s10311-023-01591-5

    Book  Google Scholar 

  7. J. Dai, Y. Zhu, H.A. Tahini, Q. Lin, Y. Chen, D. Guan, C. Zhou, Z. Hu, H.J. Lin, T.S. Chan, C. Te Chen, S.C. Smith, H. Wang, W. Zhou, Z. Shao, Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 11, 1–10 (2020). https://doi.org/10.1038/s41467-020-19433-1

    Article  CAS  Google Scholar 

  8. Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu, Z. Shao, Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28, 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457

    Article  CAS  Google Scholar 

  9. C. Electrode, N.M. Catalysts, H.E. Reaction, Use of platinum as the counter electrode to study the activity of nonprecious. Metal (2017). https://doi.org/10.1021/acsenergylett.7b00219

    Article  Google Scholar 

  10. N. Ramadass, ABO3-type oxides—their structure and properties—a bird’s eye view. Mater. Sci. Eng. 36, 231–239 (1978). https://doi.org/10.1016/0025-5416(78)90076-9

    Article  CAS  Google Scholar 

  11. X. Xu, Y. Chen, W. Zhou, Z. Zhu, C. Su, M. Liu, A Perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. (2016). https://doi.org/10.1002/adma.201600005

    Article  PubMed  PubMed Central  Google Scholar 

  12. H. Sun, J. Dai, W. Zhou, Z. Shao, Emerging strategies for developing high-performance Perovskite-based materials for electrochemical water splitting. Energy Fuels 34, 10547–10567 (2020). https://doi.org/10.1021/acs.energyfuels.0c02313

    Article  CAS  Google Scholar 

  13. B. Hua, M. Li, Y.Q. Zhang, Y.F. Sun, J.L. Luo, All-in-one Perovskite catalyst: smart controls of architecture and composition toward enhanced oxygen/hydrogen evolution reactions. Adv. Energy Mater. 7, 1700666 (2017). https://doi.org/10.1002/AENM.201700666

    Article  Google Scholar 

  14. R. Zahra, B.M. Alotaibi, A.W. Alrowaily, H.A. Alyousef, A. Dahshan, A.M.A. Henaish, Facile synthesis of perovskite SrCeO3 nanocomposite with reduced graphene oxide via hydrothermal route for effective oxygen evolution reaction. Fuel 367, 131442 (2024). https://doi.org/10.1016/J.FUEL.2024.131442

    Article  CAS  Google Scholar 

  15. Y. Liu, Y. Dou, S. Li, T. Xia, Y. Xie, Y. Wang, W. Zhang, J. Wang, L. Huo, H. Zhao, Synergistic interaction of double/simple Perovskite heterostructure for efficient hydrogen evolution reaction at high current density. Small Methods 5, 2000701 (2021). https://doi.org/10.1002/SMTD.202000701

    Article  CAS  Google Scholar 

  16. M.J.S. Mohamed, M.A. Gondal, M. Hassan, A.Z. Khan, A.M. Surrati, M.A. Almessiere, Exceptional co-catalysts free SrTiO3 perovskite coupled CdSe nanohybrid catalyst by green pulsed laser ablation for electrochemical hydrogen evolution reaction. Chem. Eng. J. Adv. 11, 100344 (2022). https://doi.org/10.1016/j.ceja.2022.100344

    Article  CAS  Google Scholar 

  17. A. Speltini, L. Romani, D. Dondi, L. Malavasi, A. Profumo, Carbon nitride-perovskite composites: evaluation and optimization of photocatalytic hydrogen evolution in saccharides aqueous solution. Catalysts 10, 1–11 (2020). https://doi.org/10.3390/catal10111259

    Article  CAS  Google Scholar 

  18. E.E. Ateia, M.K. Abdelamksoud, M.A. Rizk, Improvement of the physical properties of novel (1–x) CoFe2O4 + (x) LaFeO3 nanocomposites for technological applications. J. Mater. Sci. Mater. Electron. 28, 16547–16553 (2017). https://doi.org/10.1007/s10854-017-7567-1

    Article  CAS  Google Scholar 

  19. V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas, Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124–10137 (2016). https://doi.org/10.1039/c6nr01303a

    Article  CAS  PubMed  Google Scholar 

  20. V.M. Gaikwad, S.A. Acharya, Novel perovskite-spinel composite approach to enhance the magnetization of LaFeO3. RSC Adv. 5, 14366–14373 (2015). https://doi.org/10.1039/c4ra11619d

    Article  CAS  Google Scholar 

  21. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, G. Borodi, O. Cadar, Sol-gel synthesis, structure, morphology and magnetic properties of Ni0.6Mn0.4Fe2O4 nanoparticles embedded in SiO2 matrix. Nanomater 11, 3455 (2021). https://doi.org/10.3390/NANO11123455

    Article  CAS  Google Scholar 

  22. T. Dippong, D. Toloman, M. Dan, E.A. Levei, O. Cadar, Structural, morphological and photocatalytic properties of Ni-Mn ferrites: influence of the Ni: Mn ratio. J. Alloys Compd. 913, 165129 (2022). https://doi.org/10.1016/J.JALLCOM.2022.165129

    Article  CAS  Google Scholar 

  23. Z. Heydariyan, R. Monsef, M. Salavati-Niasari, Insights into impacts of Co3O4-CeO2 nanocomposites on the electrochemical hydrogen storage performance of g-C3N4: Pechini preparation, structural design and comparative study. J. Alloys Compd. 924, 166564 (2022). https://doi.org/10.1016/J.JALLCOM.2022.166564

    Article  CAS  Google Scholar 

  24. M. Amiri, M. Salavati-Niasari, A. Akbari, T. Gholami, Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int. J. Hydrogen Energy 42, 24846–24860 (2017). https://doi.org/10.1016/J.IJHYDENE.2017.08.077

    Article  CAS  Google Scholar 

  25. M.S. Alom, C.C.W. Kananke-Gamage, F. Ramezanipour, Perovskite oxides as electrocatalysts for hydrogen evolution reaction. ACS Omega 7, 7444–7451 (2022). https://doi.org/10.1021/acsomega.1c07203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Report, How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett. (2020). https://doi.org/10.1021/acsenergylett.0c00321

    Article  Google Scholar 

  27. H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Designing high-valence metal sites for electrochemical water splitting. Adv. Funct. Mater. 31, 1–44 (2021). https://doi.org/10.1002/adfm.202009779

    Article  CAS  Google Scholar 

  28. T. Dippong, E.A. Levei, I.G. Deac, I. Petean, O. Cadar, Dependence of structural, morphological and magnetic properties of manganese ferrite on Ni-Mn substitution. Int. J. Mol. Sci. (2022). https://doi.org/10.3390/ijms23063097

    Article  PubMed  PubMed Central  Google Scholar 

  29. T. Dippong, E.A. Levei, F. Goga, O. Cadar, Influence of Mn2+ substitution with Co2+ on structural, morphological and coloristic properties of MnFe2O4/SiO2 nanocomposites. Mater Charact 172, 110835 (2021). https://doi.org/10.1016/J.MATCHAR.2020.110835

    Article  CAS  Google Scholar 

  30. T. Dippong, E.A. Levei, C. Leostean, O. Cadar, Impact of annealing temperature and ferrite content embedded in SiO2 matrix on the structure, morphology and magnetic characteristics of (Co0.4Mn0.6Fe2O4)δ (SiO2)100-δ nanocomposites. J. Alloys Compd. 868, 159203 (2021). https://doi.org/10.1016/J.JALLCOM.2021.159203

    Article  CAS  Google Scholar 

  31. O. Sambalova, E. Billeter, O. Yildirim, A. Sterzi, D. Bleiner, A. Borgschulte, Magnetic field enhancement of electrochemical hydrogen evolution reaction probed by magneto-optics. Int. J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.10.210

    Article  Google Scholar 

  32. V.M. Gaikwad, J.R. Sheikh, S.A. Acharya, Investigation of photocatalytic and dielectric behavior of LaFeO3 nanoparticles prepared by microwave-assisted sol–gel combustion route. J. Sol-Gel Sci. Technol. 76, 27–35 (2015). https://doi.org/10.1007/S10971-015-3746-9/FIGURES/9

    Article  CAS  Google Scholar 

  33. P. Basnet, D. Samanta, T.I. Chanu, S. Jha, S. Chatterjee, Glycine-A bio-capping agent for the bioinspired synthesis of nano-zinc oxide photocatalyst. J. Mater. Sci. Mater. Electron. 31, 2949–2966 (2020). https://doi.org/10.1007/S10854-019-02839-Z/FIGURES/6

    Article  CAS  Google Scholar 

  34. M. Panahi-Kalamuei, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. J. Alloys Compd. 617, 627–632 (2014). https://doi.org/10.1016/J.JALLCOM.2014.07.174

    Article  CAS  Google Scholar 

  35. V.M. Gaikwad, S.A. Acharya, Exploration of magnetically stable BiFeO3eCoFe2O4 composites with significant dielectric ordering at room temperature. J. Alloys Compd. 755, 168–176 (2018). https://doi.org/10.1016/j.jallcom.2018.04.273

    Article  CAS  Google Scholar 

  36. F. Sayed, G. Kotnana, G. Barucca, G. Muscas, D. Peddis, R. Mathieu, T. Sarkar, LaFeO3-CoFe2O4 bi-magnetic composite thin films prepared using an all-in-one synthesis technique. J. Magn. Magn. Mater. 503, 166622 (2020). https://doi.org/10.1016/j.jmmm.2020.166622

    Article  CAS  Google Scholar 

  37. G.K. Williamsont, W.H. Hallt, X-ray line broadening from filed aluminium and wolfram* (n.d.)

  38. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  39. F. Sayed, G. Muscas, S. Jovanovic, G. Barucca, F. Locardi, G. Varvaro, D. Peddis, R. Mathieu, T. Sarkar, Controlling magnetic coupling in bi-magnetic nanocomposites. Nanoscale 11, 14256–14265 (2019). https://doi.org/10.1039/c9nr05364f

    Article  CAS  PubMed  Google Scholar 

  40. E. Cao, Y. Qin, T. Cui, L. Sun, W. Hao, Y. Zhang, Influence of Na doping on the magnetic properties of LaFeO3 powders and dielectric properties of LaFeO3 ceramics prepared by citric sol-gel method. Ceram. Int. 43, 7922–7928 (2017). https://doi.org/10.1016/j.ceramint.2017.03.119

    Article  CAS  Google Scholar 

  41. E. Cao, Y. Feng, Z. Guo, H. Wang, G. Song, Y. Zhang, W. Hao, L. Sun, Z. Nie, Ethanol sensing characteristics of (La, Ba)(Fe, Ti)O3 nanoparticles with impurity phases of BaTiO3 and BaCO3. J. Sol-Gel Sci. Technol. 96, 431–440 (2020). https://doi.org/10.1007/s10971-020-05369-x

    Article  CAS  Google Scholar 

  42. Y. Ito, W. Cong, T. Fujita, Z. Tang, M. Chen, High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chemie Int. Ed. 54, 2131–2136 (2015). https://doi.org/10.1002/anie.201410050

    Article  CAS  Google Scholar 

  43. W. Jiang, L. Cheng, J. Gao, S. Zhang, H. Wang, Z. Jin, Z. Tang, C. Peng, Preparation of crystalline lafeo3 nanoparticles at low calcination temperature: precursor and synthesis parameter effects. Materials (2021). https://doi.org/10.3390/ma14195534

    Article  PubMed  PubMed Central  Google Scholar 

  44. S. Bhowmick, A. Dhankhar, T.K. Sahu, R. Jena, D. Gogoi, N.R. Peela, S. Ardo, M. Qureshi, Low overpotential and stable electrocatalytic oxygen evolution reaction utilizing doped Perovskite oxide, La0.7Sr0.3MnO3, modified by cobalt phosphate. ACS Appl. Energy Mater. (2020). https://doi.org/10.1021/acsaem.9b02167

    Article  Google Scholar 

  45. J. Pani, H. Borkar, Enhanced electrochemical energy storage performance by mediating BaTiO3 nanoparticles into the multilayers of Ti3C2Tx MXene. J. Electroanal. Chem. 956, 118092 (2024). https://doi.org/10.1016/j.jelechem.2024.118092

    Article  CAS  Google Scholar 

  46. M. Zhu, W. Meng, Y. Huang, Y. Huang, C. Zhi, Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Appl. Mater. Interfaces 6, 18901–18910 (2014). https://doi.org/10.1021/AM504756U/SUPPL_FILE/AM504756U_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  47. J.T. Mefford, Z. Zhao, M. Bajdich, W.C. Chueh, Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches. Energy Environ. Sci. 13, 622–634 (2020). https://doi.org/10.1039/c9ee02697e

    Article  CAS  Google Scholar 

  48. N.M. Sadik, A.A. Sattar, M.M. Rashad, H.M. Elsayed, Physical, magnetic and enhanced electrical properties of SrTiO3–MgFe2O4 nanocomposites. SN Appl. Sci. 2, 1–9 (2020). https://doi.org/10.1007/S42452-020-2450-8/FIGURES/9

    Article  Google Scholar 

  49. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 321, 1251–1255 (2009). https://doi.org/10.1016/J.JMMM.2008.11.004

    Article  CAS  Google Scholar 

  50. Y. Wang, H.P. Cheng, Oxygen reduction activity on perovskite oxide surfaces: a comparative first-principles study of LaMnO3, LaFeO3, and LaCrO3. J. Phys. Chem. C 117, 2106–2112 (2013). https://doi.org/10.1021/jp309203k

    Article  CAS  Google Scholar 

  51. F. Sayed, G. Kotnana, G. Muscas, F. Locardi, A. Comite, G. Varvaro, D. Peddis, G. Barucca, R. Mathieu, T. Sarkar, Symbiotic, low-temperature, and scalable synthesis of bi-magnetic complex oxide nanocomposites. Nanoscale Adv. 2, 851–859 (2020). https://doi.org/10.1039/c9na00619b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. K.S. Muthu, N. Lakshminarasimhan, P. Perumal, One-pot synthesis of LaFeO3-NiFe2O4 nanocomposite ceramic by egg-white method and its magnetic and dielectric properties. Solid State Sci. 72, 33–40 (2017). https://doi.org/10.1016/j.solidstatesciences.2017.08.002

    Article  CAS  Google Scholar 

  53. V.M. Gaikwad, S.A. Acharya, Exploration of magnetically stable BiFeO3–CoFe2O4 composites with significant dielectric ordering at room temperature. J. Alloys Compd. 755, 168–176 (2018). https://doi.org/10.1016/j.jallcom.2018.04.273

    Article  CAS  Google Scholar 

  54. H. Singh, K.L. Yadav, Synthesis and study of structural, dielectric, magnetic and magnetoelectric characterization of BiFeO3–NiFe2O4 nanocomposites prepared by chemical solution method. J. Alloys Compd. 585, 805–810 (2014). https://doi.org/10.1016/J.JALLCOM.2013.09.201

    Article  CAS  Google Scholar 

  55. S. Dabas, P. Chaudhary, M. Kumar, S. Shankar, O.P. Thakur, Structural, microstructural and multiferroic properties of BiFeO3–CoFe2O4 composites. J. Mater. Sci. Mater. Electron. 30, 2837–2846 (2019). https://doi.org/10.1007/S10854-018-0560-5/FIGURES/12

    Article  CAS  Google Scholar 

  56. N.T. Thuy, D. Le Minh, Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/380306

    Article  Google Scholar 

  57. S. Phokha, S. Pinitsoontorn, S. Maensiri, S. Rujirawat, Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J. Sol-Gel Sci. Technol. 71, 333–341 (2014). https://doi.org/10.1007/s10971-014-3383-8

    Article  CAS  Google Scholar 

  58. L. Xi, L. Xiaoxun, X. Baokun, Z. Muyu, XPS study of adsorbed oxygen of nanocrystalline LaFeO3 materials. J. Alloys Compd. 186, 315–319 (1992). https://doi.org/10.1016/0925-8388(92)90018-5

    Article  Google Scholar 

  59. E. Cao, H. Wang, X. Wang, Y. Yang, W. Hao, L. Sun, Y. Zhang, Enhanced ethanol sensing performance for chlorine doped nanocrystalline LaFeO3-δ powders by citric sol-gel method. Sensors Actuators B Chem. 251, 885–893 (2017). https://doi.org/10.1016/J.SNB.2017.05.153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jitesh Pani acknowledges Department of Science and Technology, Government of India for providing research grant under the INSPIRE fellowship (IF200298). HB acknowledge for the financial support from Department of Science and Technology, New Delhi (SERB-DST (file no EEQ/2022/001055; through Diary No./Finance No. RS-1129-GoI-SERB). JP, and HB would like to thanks the Director, NIT Warangal for his constant encouragement.

Author information

Authors and Affiliations

Authors

Contributions

MV—Conceptualization, Experimental Findings, Methodology, Data curation. MV and JP—Writing, data curation, original draft. BMR—Validation, Review data curation, resources, review and editing. VMG—Visualization and data curation magnetic characterization. HB—reviewed and edited manuscript resources project administration.

Corresponding authors

Correspondence to Vishwajit M. Gaikwad or Hitesh Borkar.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3556 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velaga, M., Pani, J., Rao, B.M. et al. Exploring hydrogen evolution in perovskite LaFeO3 and composites with spinel ferrite CoFe2O4. J Mater Sci: Mater Electron 35, 980 (2024). https://doi.org/10.1007/s10854-024-12719-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12719-w

Navigation