Skip to main content
Log in

Electric field-induced changes in photoluminescence and Raman spectra of MoS2 on PVA-coated conductive substrate with nematic liquid crystals: a combined numerical and experimental study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides, particularly Molybdenum Disulphide (MoS2), have garnered significant attention in scientific research due to their remarkable optoelectrical characteristics. In this study, the characteristics of MoS2 flakes deposited on indium tin oxide (ITO) glass slides coated with polyvinyl alcohol (PVA) were investigated. The influence of a strain stimulus provided by a nematic liquid crystal (NLC) called 5CB on the MoS2 structure was studied using Raman polar plots, revealing its potential as an electrically controlled light controller. The analysis of Raman Shift showed that the application of tensile strain-induced defects in the MoS2 structure resulted in a lowered bandgap energy level. Photoluminescence (PL) spectroscopy demonstrated that the combination of 5CB and an electric field enhanced the exciton lifetime and decreased the bandgap energy levels. The study employed theoretical and computational modeling of PL/Raman techniques for qualitative and quantitative analysis of the PVA-coated ITO-MoS2 sample. The utilization of Mathematica v 9.0 contributed to the accuracy and reliability of the results, ensuring robust analysis and interpretation of the experimental data. These findings contribute to the understanding of strain-induced effects on MoS2 and highlight the potential of using NLCs for optoelectronic control in MoS2-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used in this research will be made available upon request.

Abbreviations

TMDCs:

Transition metal dichalcogenides

2D:

Two dimensional

NbS2 :

Niobium sulphide

TaS2 :

Tantalum sulphide

eV:

Electron volt

V:

Volt

ITO:

Indium doped tin oxide

MoS2 :

Molybdenum sulphide

PVA:

Polyvinyl alcohol

LCs:

Liquid crystals

NLCs:

Nematic liquid crystals

PDMS:

Polydimethylsiloxane

E-field:

Electric field

PL:

Photoluminescence

References

  1. Z. Wang, B. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. N. Thomas, S. Mathew, K.M. Nair, K. O’Dowd, P. Forouzandeh, A. Goswami, G. McGranaghan, S.C. Pillai, 2D MoS2: structure, mechanisms, and photocatalytic applications. Mater. Today Sustain. 13, 100073 (2021)

    Article  Google Scholar 

  3. Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang, Z. Wang, M. Dong, Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023)

    Article  CAS  Google Scholar 

  4. Z. Wang, X. Xiong, J. Li, M. Dong, Screening fermi-level pinning effect through van der waals contacts to monolayer MoS2. Mater. Today Phys. 16, 100290 (2021)

    Article  CAS  Google Scholar 

  5. M. Mohan, N.P. Shetti, T.M. Aminabhavi, Phase dependent performance of MoS2 for supercapacitor applications. J. Energy Storage 58, 106321 (2023)

    Article  Google Scholar 

  6. A. Altibelli, C. Joachim, P. Sautet, Interpretation of STM images: the MoS2 surface. Surf. Sci. 367, 209–220 (1996)

    Article  CAS  Google Scholar 

  7. S. Parmar, S. Panchal, S. Datar, S. Ogale, Semiconductor-semimetal 2D/3D MoS2/SrRuO3 (111) TMD/TMO heterojunction-based ReRAM devices. ACS Appl. Electron. Mater. 5, 5588–5597 (2023)

    Article  CAS  Google Scholar 

  8. S. Parmar, A. Biswas, B. Ray, S. Gosavi, S. Datar, S. Ogale, Stabilizing metastable polymorphs of van der Waals solid MoS2 on single crystal oxide substrates: exploring the possible role of surface chemistry and structure. J. Phys. Chem. C 125, 11216–11224 (2021)

    Article  CAS  Google Scholar 

  9. I.M. Datye, A. Daus, R.W. Grady, K. Brenner, S. Vaziri, E. Pop, Strain-enhanced mobility of monolayer MoS2. Nano Lett. 22, 8052–8059 (2022)

    Article  CAS  PubMed  Google Scholar 

  10. D.R. Kripalani, P.-P. Sun, P. Lin, M. Xue, K. Zhou, Strain-driven superplasticity of ultrathin tin (II) oxide films and the modulation of their electronic properties: a first-principles study. Phys. Rev. B 100, 214112 (2019)

    Article  CAS  Google Scholar 

  11. B.H. Kim, M. Park, M. Lee, S.J. Baek, H.Y. Jeong, M. Choi, S.J. Chang, W.G. Hong, T.K. Kim, H.R. Moon, Effect of sulphur vacancy on geometric and electronic structure of MoS2 induced by molecular hydrogen treatment at room temperature. RSC Adv. 3, 18424–18429 (2013)

    Article  CAS  Google Scholar 

  12. M. López-Suárez, I. Neri, R. Rurali, Band gap engineering of MoS2 upon compression. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4948376

    Article  Google Scholar 

  13. X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiomics 1, 33–44 (2015)

    Article  Google Scholar 

  14. K.M. Herbert, H.E. Fowler, J.M. McCracken, K.R. Schlafmann, J.A. Koch, T.J. White, Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7, 23–38 (2022)

    Article  CAS  Google Scholar 

  15. H. Ayeb, M. Derbali, A. Mouhli, T. Soltani, F. Jomni, J. Fresnais, E. Lacaze, Viscoelastic and dielectric properties of 5CB nematic liquid crystal doped by magnetic and nonmagnetic nanoparticles. Phys. Rev. E 102, 052703 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. N.Y. Canli, D. Özükanar, D. Vardar, P. Kavak, A.A. Bozkurt, H. Ocak, B.B. Eran, Determination of dielectric properties of 5CB nematic liquid crystal doped with new chiral calamitic compounds. J. Mater. Sci.: Mater. Electron. 34, 1304 (2023)

    CAS  Google Scholar 

  17. D.V. Shmeliova, S.V. Pasechnik, S.S. Kharlamov, A.V. Zakharov, E.P. Pozhidaev, V.A. Barbashov, T.P. Tkachenko, Capillary flows of nematic liquid crystal. Crystals 10, 1029 (2020)

    Article  CAS  Google Scholar 

  18. X. Zhan, D. Luo, K.-L. Yang, Multifunctional sensors based on liquid crystals scaffolded in nematic polymer networks. RSC Adv. 11, 38694–38702 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Blundo, C. Di Giorgio, G. Pettinari, T. Yildirim, M. Felici, Y. Lu, F. Bobba, A. Polimeni, Engineered creation of periodic giant, nonuniform strains in MoS2 monolayers. Adv. Mater. Interfaces 7, 2000621 (2020)

    Article  CAS  Google Scholar 

  20. G. Pathak, G. Shukla, A. Srivastava, O. Strzezysz, R. Manohar, Dispersion of nanoparticles into the low birefringent nematic liquid crystal: study of optical and electro-optical parameters and its applicability towards liquid crystal displays. J. Theor. Appl. Phys. 14, 51–59 (2020)

    Article  Google Scholar 

  21. P. Tripathi, D. Singh, T. Yadav, V. Singh, A. Srivastava, Y. Negi, Enhancement of birefringence for liquid crystal with the doping of ferric oxide nanoparticles. Opt. Mater. 135, 113298 (2023)

    Article  CAS  Google Scholar 

  22. L.-L. Ma, C.-Y. Li, J.-T. Pan, Y.-E. Ji, C. Jiang, R. Zheng, Z.-Y. Wang, Y. Wang, B.-X. Li, Y.-Q. Lu, Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 11, 270 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J.-S. Yu, J.-J. Hwang, D.-H. Kim, J.-H. Kim, Anchoring strength of a nematic liquid crystal on 2D materials. Liq. Cryst. 50, 674–680 (2023)

    Article  CAS  Google Scholar 

  24. A. Shabbir, Z. Khan, A. Ali, W. Qasim, N. Ahmad, Z. Hussain, H. Pervaiz, Diamond-like carbon film deposited via electrochemical route for antireflection applications in photovoltaic. Key Eng. Mater. 928, 163–175 (2022)

    Article  Google Scholar 

  25. J. Wang, Z. Ji, G. Yang, X. Chuai, F. Liu, Z. Zhou, C. Lu, W. Wei, X. Shi, J. Niu, Charge transfer within the F4TCNQ-MoS2 van der Waals Interface: toward electrical properties tuning and gas sensing application. Adv. Func. Mater. 28, 1806244 (2018)

    Article  Google Scholar 

  26. A.R. Dogra, V. Sharma, P. Malik, P. Kumar, Fabrication and characterization of multilayer self assembled silica nanoparticles in a confined empty ito cell with in-situ homeotropic alignment of dye doped liquid crystal for display devices, Available at SSRN 4583154

  27. A. Shabbir, Z. Hussain, Z.S. Khan, W. Qasim, Morphology matters: investigating the influence of granules and nanofibers on the physicochemical properties of TiO2 for optoelectronic applications. Opt. Mater. 146, 114525 (2023)

    Article  CAS  Google Scholar 

  28. V.J. Cicily Rigi, M.K. Jayaraj, K.J. Saji, Effect of substrate and substrate temperature on the deposition of MoS2 by radio frequency magnetron sputtering. J. Vacuum Sci. Technol A (2022). https://doi.org/10.1116/6.0001685

    Article  Google Scholar 

  29. V.Y. Reshetnyak, and Taras Shevchenko National University of Kyiv Kyiv Ukraine. Theoretical modeling of liquid crystal based tunable metamaterials. 0024 (2019)

  30. J. Gao, Y.D. Kim, L. Liang, J.C. Idrobo, P. Chow, J. Tan, B. Li, L. Li, B.G. Sumpter, T.-M. Lu, Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 28, 9735 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. C. Vidya, C. Manjunatha, A. Pranjal, I. Faraaz, K. Prashantha, A multifunctional nanostructured molybdenum disulphide (MoS2): an overview on synthesis, structural features, and potential applications. Mater. Res. Innov. 27, 177–193 (2023)

    Article  Google Scholar 

  32. Y.V. Zhumagulov, A. Vagov, D.R. Gulevich, P.E. Faria Junior, V. Perebeinos, Trion induced photoluminescence of a doped MoS2 monolayer. J. Chem. Phys. (2020). https://doi.org/10.1063/5.0012971

    Article  PubMed  Google Scholar 

  33. S. Golovynskyi, I. Irfan, M. Bosi, L. Seravalli, O.I. Datsenko, I. Golovynska, B. Li, D. Lin, J. Qu, Exciton and trion in few-layer MoS2: thickness-and temperature-dependent photoluminescence. Appl. Surf. Sci. 515, 146033 (2020)

    Article  CAS  Google Scholar 

  34. D. Mastrippolito, S. Palleschi, G. D’Olimpio, A. Politano, M. Nardone, P. Benassi, L. Ottaviano, Exciton–phonon coupling and power dependent room temperature photoluminescence of sulphur vacancy doped MoS2 via controlled thermal annealing. Nanoscale 12, 18899–18907 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. T. Verhagen, V.L. Guerra, G. Haider, M. Kalbac, J. Vejpravova, Towards the evaluation of defects in MoS2 using cryogenic photoluminescence spectroscopy. Nanoscale 12, 3019–3028 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. J.-S. Yu, J.-J. Hwang, J.-Y. Lee, D.H. Ha, J.-H. Kim, Tuning photoluminescence spectra of MoS2 with liquid crystals. Nanoscale 13, 16641–16648 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. H.C. Foley, Introduction to chemical engineering analysis using mathematica: for chemists biotechnologists and materials scientists (Academic Press, 2021)

    Google Scholar 

  38. M. Sayraç, Computation of refractive index values of inert gases at near infrared and XUV region based on mathematica software. Adıyaman Univ. J. Sci. 11, 48–58 (2021)

    Google Scholar 

  39. P. Taank, R. Karmakar, R. Sharma, R.K. Yadav, M. Shrivastava, N.C. Maurya, T.K. Maji, D. Karmakar, K.V. Adarsh, An insightful picture of multi-particle recombination in few-layer MoS2 nanosheets. J. Phys. Chem. C 126, 416–422 (2022)

    Article  CAS  Google Scholar 

  40. M.D. Haque, M.H. Ali, M.F. Rahman, A.Z.M.T. Islam, Numerical analysis for the efficiency enhancement of MoS2 solar cell: a simulation approach by SCAPS-1D. Opt. Mater. 131, 112678 (2022)

    Article  CAS  Google Scholar 

  41. Y.R. Farah, Accessing molecular structure and dynamics of photoelectrochemical systems with nonlinear optical spectroscopy, Colorado State University, (2022)

  42. A. Zarnescu, Mathematical problems of nematic liquid crystals: between dynamical and stationary problems. Phil. Trans. R. Soc. A 379(2201), 20200432 (2021)

    Article  PubMed  Google Scholar 

  43. S. Pandey, Effect of temperature, concentration of precursors and distance between precursors on the synthesis of molybdenum disulfide (MoS2) using chemical vapor deposition (CVD) technique-CVD grown monolayer MoS2 based RRAM, Delhi Technological University, (2021)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

M. Kashif contributed to the manuscript writing, and literature review, and conducted experimental and modeling for the research. Altamash Shabbir contributed to the manuscript writing, literature review, and Modeling Design and critically reviewed and revised the work. Both authors actively participated in the research process and contributed to the development and completion of the study.

Corresponding author

Correspondence to Altamash Shabbir.

Ethics declarations

Competing interest

The authors declare that they have no personal or financial interests that may have influenced the research conducted in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashif, M., Shabbir, A. Electric field-induced changes in photoluminescence and Raman spectra of MoS2 on PVA-coated conductive substrate with nematic liquid crystals: a combined numerical and experimental study. J Mater Sci: Mater Electron 35, 954 (2024). https://doi.org/10.1007/s10854-024-12714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12714-1

Navigation