Skip to main content
Log in

Structural and optical properties of nickel aluminate spinel ferrite thin films prepared by spray pyrolysis technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we report the preparation of nano-crystalline thin films of nickel aluminate spinel ferrite having the chemical formula NiFe2−xAlxO4, where Al3+ varies from 0.0 to 0.4 with rise in 0.1, using the well-known spray pyrolysis deposition method. The thin films were grown and deposited on ultrasonically clean glass substrate. The X-ray diffraction pattern show orientation of various is diffraction peaks at (220), (311) (222), (400), (422), (511), and (440). The presence of this diffraction peak suggests the formation of single-phase compound as there are no extra diffraction peaks in the XRD pattern other than cubic spinel phase. The crystallite size deduced from the Debye–Scherrer equation varies in the range 19–14 nm. The Lattice parameter found to decrease with doping of Al3+ ions. FTIR spectra show the absorbance bands are close to the 400 cm−1 and 600 cm−1 wave number which are attributed to stretching vibrations of metal–oxygen bond. The presence of five active modes in Raman spectra confirm the ferrimagnetic spinel structure of the thin film. Field emission scanning electron microscopy (FESEM) shows the spherical grain morphology with some agglomeration. Energy-dispersive X-ray analysis (EDAX) spectra show the presence NiFe2−xAlxO4 elements in stoichiometric proportion. The ohmic nature of the prepared thin film was confirmed through IV characteristics. The band gap energy estimated through UV–visible technique varies in the range of 2.05–1.14 eV indicating the semiconducting behavior of the prepared thin films. The obtained results are useful for opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The research data generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. I. Dumitru, O.F. Caltun, Ferrite Nanostructured Magnetic Materials (Elsevier, Amsterdam, 2023). https://doi.org/10.1016/B978-0-12-823717-5.00017-6

    Book  Google Scholar 

  2. N. Yasmin, S. Abdulsatar, M. Hashim, M. Zahid, S.G. Fatima, A. Kalsoom, M.N. Shiq, I. Inam, M. Safdar, M. Mirza, J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2018.10.076

    Article  Google Scholar 

  3. X. Han, J. Li, H. Wu, K. Sun, Y. Chen, L. Jia, H. Zhang, P. Zhang, C. Wu, J. Magn. Magn. Mater. (2023). https://doi.org/10.1016/j.jmmm.2023.170512

    Article  Google Scholar 

  4. M. Sugimoto, J. Am. Ceram. Soc. (1999). https://doi.org/10.1111/j.1551-2916.1999.tb20058.x

    Article  Google Scholar 

  5. M.N. Akhtar, S. Makhdoom, M.A. Baqir, M. Yousaf, M.A. Khan, K.M. Batoo, S. Hussain, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.06.208

    Article  Google Scholar 

  6. W. Zhu, L. Wang, R. Zhao, J. Ren, G. Lua, Y. Wang, Nanoscale (2011). https://doi.org/10.1039/C1NR10274E

    Article  PubMed  PubMed Central  Google Scholar 

  7. O.D. Dastjerdi, H. Shokrollahi, S. Mirshekari, Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.110797

    Article  Google Scholar 

  8. O. Caltun, H. Chiriac, N. Lupu, I. Dumitru, B.P. Rao, J. Optoelectron. Adv. Mater. (2007). https://www.researchgate.net/profile/Ovidiu-Caltun/publication/228856465_High_magnetostrictive_doped_cobalt_ferrite/links/0fcfd50e53ed93d1d9000000/High-magnetostrictive-doped-cobalt-ferrite.pdf

  9. S. Manori, A. Manori, R.K. Shukla, Engineered Ferrites and Their Applications (Springer, Singapore, 2023). https://doi.org/10.1007/978-981-99-2583-4_10

    Book  Google Scholar 

  10. M. Aadil, A.G. Takib, S. Zulfiqar, A. Rahmane, M. Shahidf, M.F. Warsif, Z. Ahmad, A.A. Alothmanh, S. Mohammad, RSC Adv. (2023). https://doi.org/10.1039/D3RA05290G

    Article  PubMed  PubMed Central  Google Scholar 

  11. S. Li, Y. Yang, H. Zheng, Y. Zheng, C.-S. He, B. Lai, J. Ma, J. Nan, Water Res. (2022). https://doi.org/10.1016/j.watres.2022.119176

    Article  PubMed  PubMed Central  Google Scholar 

  12. G. Katoch, J. Prakash, R. Jasrotia, A. Verma, R. Verma, S. Kumari, T. Ahmad, S.K. Godara, J. Ahmed, A. Kandwal, M. Fazil, P.K. Maji, S. Kumar, G. Kumar, J. Water Process Eng. (2023). https://doi.org/10.1016/j.jwpe.2023.103726

    Article  Google Scholar 

  13. C. Wang, G. Sui, D. Guo, J. Li, Z. Luo, D.-F. Chai, M. Qi, Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.05.185

    Article  Google Scholar 

  14. J.H. Kim, H.E. Kim, J.H. Kim, J.S. Lee, J. Mater. Chem. A (2020). https://doi.org/10.1039/D0TA01554G

    Article  Google Scholar 

  15. Y. Zhang, Y. Yang, C. Chen, D. Chen, Y. Meng, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.08.276

    Article  Google Scholar 

  16. M.N. Akhtar, S. Makhdoom, M.S. Nazir, M. Yousaf, M.A. Khan, Magnetic Nanoferrites and Their Composites (Elsevier, Amsterdam, 2023). https://doi.org/10.1016/B978-0-323-96115-8.00014-3

    Book  Google Scholar 

  17. P. Priyadharshini, K. Pushpanathan, Chem. Phys. Impact (2023). https://doi.org/10.1016/j.chphi.2023.100201

    Article  Google Scholar 

  18. A. Hajalilou, S.A. Mazlan, Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0217-2

    Article  Google Scholar 

  19. J. Ai, Z.Y. Shua, M. Hu, L. Cheng, S. Luo, W. Li, Z. Chen, L. Hu, Z. Zhou, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.04.119

    Article  Google Scholar 

  20. M.A. Dar, Research Prospects in Natural Sciences (RPNS) (2023), https://journals.gctownship.edu.pk/index.php/rpns/article/view/58

  21. L. Kumar, P. Kumar, M. Kar, Appl. Nanosci. (2013). https://doi.org/10.1007/s13204-012-0071-2

    Article  Google Scholar 

  22. N. Sivakumar, A. Narayanasamy, J.-M. Greneche, R. Murugaraj, Y.S. Lee, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.05.125

    Article  Google Scholar 

  23. F. Li, J. Liu, D.G. Evans, X. Duan, Chem. Mater. (2004). https://doi.org/10.1021/cm035248c

    Article  Google Scholar 

  24. A.R. Chavan, J.S. Kounsalye, R.R. Chilwar, S.B. Kale, K.M. Jadhav, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.08.061

    Article  Google Scholar 

  25. L. Krishnia, P. Thakur, A. Thakur, Synthesis and Applications of Nanoparticles (Springer, Singapore, 2022). https://doi.org/10.1007/978-981-16-6819-7_3

    Book  Google Scholar 

  26. M. El Jouad, T. Garmim, A. Louardi, B. Hartiti, M. Monkade, S. Touhtouh, A. Hajjaji, Mater. Sci. Eng. B (2022). https://doi.org/10.1016/j.mseb.2022.116044

    Article  Google Scholar 

  27. B. Kharat, V. Magar, S. Rathod, A.A. Chaudhari, V.B. Malode, Adv. Mater. Res. (2022). https://doi.org/10.4028/p-f41120

    Article  Google Scholar 

  28. S.R. Sriram, S.R. Parne, N. Pothukanuri, S.R. Edla, J. Anal. Appl. Pyrol. (2022). https://doi.org/10.1016/j.jaap.2022.105527

    Article  Google Scholar 

  29. B.C. Marupalli, A. Behera, S. Aich, Trans. Indian Inst. Met. (2021). https://doi.org/10.1007/s12666-021-02418-z

    Article  Google Scholar 

  30. A. Faramawy, H. El Sayed, Nano Express (2023). https://doi.org/10.1088/2632-959X/ad0ee9

    Article  Google Scholar 

  31. T. Dippong, D. Toloman, M.D. Lazar, I. Petean, Nanomaterials (2023). https://doi.org/10.3390/nano13243096

    Article  PubMed  PubMed Central  Google Scholar 

  32. S. Nandy, K.H. Chae, Ferrite Nanostructured Magnetic Materials (Elsevier, Amsterdam, 2023). https://doi.org/10.1016/B978-0-12-823717-5.00021-8

    Book  Google Scholar 

  33. M.M. Naik, H.S.B. Naik, G. Nagaraju, M. Vinuth, K. Vinu, S.K. Rashmi, J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0174-y

    Article  Google Scholar 

  34. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.12.097

    Article  Google Scholar 

  35. R.T. Shannon, C.T. Prewitt, Struct. Sci. Cryst. Eng. Mater. (1969). https://doi.org/10.1107/S0567740869003220

    Article  Google Scholar 

  36. R.T. Shannon, C. Prewitt, Struct. Sci. Cryst. Eng. Mater. (1970). https://doi.org/10.1107/S0567740870003576

    Article  Google Scholar 

  37. A.R. Chavan, S.D. Birajdar, R.R. Chilwar, K.M. Jadhav, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.11.326

    Article  Google Scholar 

  38. A. Raghavender, D. Pajic, K. Zadro, T. Milekovic, P.V. Rao, K.M. Jadhav, D. Ravinder, J. Magn. Magn. Mater. (2007). https://doi.org/10.1016/j.jmmm.2007.03.204

    Article  Google Scholar 

  39. S.Z.H. Hashmi, M. Khalid, G. Mustafa, M.G.B. Ashiq, M. Younas, A. Quddus, H.S.M. Abd-Rabboh, T. Alshahrani, K. Naz, M.M. Javid, Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.127912

    Article  Google Scholar 

  40. S. Das, S. Paikaray, I. Swain, S. Senapati, R. Naik, Surf. Interfaces (2023). https://doi.org/10.1016/j.surfin.2023.103395

    Article  Google Scholar 

  41. S. Giri, P. Priyadarshini, D. Alagarasan, R. Ganesan, R. Naik, RSC Adv. (2023). https://doi.org/10.1039/D3RA03731B

    Article  PubMed  PubMed Central  Google Scholar 

  42. D. Pawar, S.M. Pawar, P.S. Patil, S.S. Kolekar, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2010.12.079

    Article  Google Scholar 

  43. D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Physica B (2020). https://doi.org/10.1016/j.physb.2020.412051

    Article  Google Scholar 

  44. D.D. Andhare, S.R. Patade, S.A. Jadhav, S.B. Somvanshi, K.M. Jadhav, Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04603-9

    Article  Google Scholar 

  45. D. Alagarasan, S. Varadharajaperumal, R. Aadhavan, B. Shanmugavelu, R. Naik, Kh. Salunii, K. Haunsbhavi, M. Shkir, E.E.S. Massoud, R. Ganesan, Sens. Actuators A (2023). https://doi.org/10.1016/j.sna.2022.114065

    Article  Google Scholar 

  46. R. Naik, A. Jain, R. Ganesan, K.S. Sangunni, Thin Solid Films (2012). https://doi.org/10.1016/j.tsf.2011.10.029

    Article  Google Scholar 

  47. A. Henaish, B.I. Salem, T.M. Meaz, Y.A. Alibwaini, A.W. Ajlouni, O.M. Hemeda, E.A. Arrasheed, Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.111397

    Article  Google Scholar 

  48. R. Panda, H. Rath, S.A. Khan, D. Alagarasan, U.P. Singh, N.C. Mishra, R. Naik, Surf. Interfaces (2023). https://doi.org/10.1016/j.surfin.2023.103081

    Article  Google Scholar 

Download references

Acknowledgements

Vikas U. Magar is thankful to MAHAJYOTI (Mahatma Phule Research and Training Institute, Nagpur) for providing financial support. The author is thankful to Director, Institute of Chemical Technology, Mumbai Marathwada Campus, Jalna, for providing Raman data.

Funding

Vikas U. Magar acknowledges financial support from Mahatma Jyotiba Phule Research and Training Institute (MAHAJYOTI), Maharashtra State in then form of Mahatma Jyotiba Phule Research Fellowship (MAHAJYOTI/2022/Ph.D.Fellow/1002 (1178)).

Author information

Authors and Affiliations

Authors

Contributions

Vikas U. Magar conceived and designed the research study, performed the experiments, analyzed the data, and wrote the manuscript. Sagar V. Rathod, Pratik Patil, and Smita More contributed to the supervision, experimental design, data analysis, and manuscript preparation. M.K. Babrekar assisted in data collection, interpretation, and critical revision of the manuscript.

Corresponding author

Correspondence to Vikas U. Magar.

Ethics declarations

Competing interests

The authors declare no competing interests regarding the publication of this research manuscript.

Ethical approval

This research study was conducted in compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magar, V.U., Rathod, S.V., Patil, P.S. et al. Structural and optical properties of nickel aluminate spinel ferrite thin films prepared by spray pyrolysis technique. J Mater Sci: Mater Electron 35, 967 (2024). https://doi.org/10.1007/s10854-024-12705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12705-2

Navigation