Skip to main content
Log in

A comparative study of structural, optical, and magnetic properties of LaFeO3 and La2CuO4 perovskite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The creation of perovskite-based materials with a high absorption rate and a regulated effective absorption bandwidth is the top priority for the majority of applications. In the present study, the LaFeO3 and La2CuO4 nanoparticles (NPs) were prepared using the microwave combustion method, exploiting l-arginine as fuel. The characterization of the prepared LaFeO3 and La2CuO4 NPs was carried out using multiple advanced techniques. The X-ray diffraction (XRD) studies confirmed the prepared LaFeO3 and La2CuO4 NPs to exist in their orthorhombic perovskite structure. The X-ray photoelectron spectroscopy (XPS) peak areas are often used to quantify the elemental compositions and oxidizing states of LaFeO3 and La2CuO4 perovskite materials surface. Moreover, their respective average size of 21 and 25 nm was estimated by field-emission scanning electron microscopy (FE-SEM) technique. The infrared (IR) spectra of LaFeO3 NPs indicated the appearance of two bands at 656 and 570 cm−1, which can be ascribed to stretching vibration for La3+–O2− tetrahedral and Fe3+–O2− octahedral units, respectively. Further, associating ultraviolet (UV) with diffuse reflectance spectroscopy (DRS), the band gap value for LaFeO3 and La2CuO4 NPs was found to be 2.17 and 2.13 eV, respectively. In addition, the magnetic investigations via magnetic hysteresis (MH) loops revealed the ferromagnetic behavior of both the LaFeO3 and La2CuO4 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. E. Sreelekha, B. George, A. Shyam, N. Sajina, B. Mathew, A Comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. Bionanoscience (2021). https://doi.org/10.1007/s12668-021-00824-7

    Article  Google Scholar 

  2. Q. Rong, Y. Zhang, J. Hu, K. Li, H. Wang, M. Chen, T. Lv, Z. Zhu, J. Zhang, Q. Liu, Design of ultrasensitive Ag–LaFeO3 methanol gas sensor based on quasi molecular imprinting technology. Sci. Rep. 14220(8), 1–12 (2018)

    Google Scholar 

  3. M. Humayun, H. Ullah, M. Usman, A.Z. Yangjeh, A.A. Tahir, C. Wang, W. Luo, Perovskite-type lanthanum ferrite based photocatalysts: preparation, properties, and applications. J. Energy Chem. 66, 314–338 (2022)

    Article  CAS  Google Scholar 

  4. M. Sabir, N. AlMasoud, M. Ramzan, M. Aamir, S.R. Ejaz, T.S. Alomar, Z.M. El-Bahy, M.A. Salam, S.M. Albukhari, D.F. Baamer, Rare earth and transition metal co-doped LaFeO3 perovskite and its CNTs reinforced nanohybrid for environmental remediation application. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.227

    Article  Google Scholar 

  5. V. Vermani, M. Chauhan, E. Arya et al., Comprehensive study of double perovskite SrLaFeTiO6: structural, dielectric, magnetic and ferroelectric properties. J. Mater. Sci. Mater. Electron. 35, 345 (2024)

    Article  Google Scholar 

  6. A.H. Ibrahim, S. Mosaad, E. Elesh, Microstructure evolution, dielectric response, and conduction mechanism La1xYxFeO3 (0 < x < 0.3) of annealed perovskites synthesized via a sol–gel combustion technique. J. Mater. Sci. Mater. Electron. 35, 400 (2024)

    Article  CAS  Google Scholar 

  7. F. Bidrawn, S. Lee, J.M. Vohs, R.J. Gortea, The effect of Ca, Sr, and Ba doping on the ionic conductivity and cathode performance of LaFeO3. J. Electrochem. Soc. 155(7), B660–B665 (2008)

    Article  CAS  Google Scholar 

  8. E. Cao, Z. Chu, H. Wang, W. Hao, L. Sun, Y. Zhang, Effect of film thickness on the electrical and ethanol sensing characteristics of LaFeO3 nanoparticle-based thick film sensors. Ceram. Int. 44(6), 7180–7185 (2018)

    Article  CAS  Google Scholar 

  9. X. Hao, Y. Zhang, Low temperature gel-combustion synthesis of porous nanostructure LaFeO3 with enhanced visible-light photocatalytic activity in reduction of Cr(VI). Mater. Lett. 197, 120–122 (2017)

    Article  CAS  Google Scholar 

  10. G.R. Hearne, M.P. Pasternak, R.D. Taylor, P. Lacorre, Electronic structure and magnetic properties of LaFeO3 at high pressure. Phys. Rev. B 51(17), 1–6 (1995)

    Article  Google Scholar 

  11. J. Lü, J. Mai, T. Fan et al., Thermally stable double perovskite Ca2YTaO6:Tb3+, Eu3+ phosphor for warm white LEDs. J. Mater. Sci. Mater. Electron. 35, 231 (2024)

    Article  Google Scholar 

  12. N. Labhasetwar, G. Saravanan, S.K. Megarajan, N. Manwar, R. Khobragade, P. Doggali, F. Grasset, Perovskite-type catalytic materials for environmental applications. Sci. Technol. Adv. Mater. 16, 036002 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  13. T. Uchiyama, R. Karita, M. Nishibori, H. Einaga, Y. Teraoka, Preparation and characterization of Pd loaded Sr-deficient K2NiF4-type (La, Sr)2MnO4 catalysts for NO–CO reaction. Catal. Today 251, 7–13 (2015)

    Article  CAS  Google Scholar 

  14. Y. Li, J. Huang, L. Cao, J. Wu, J. Fei, Optical properties of La2CuO4 and La2−xCaxCuO4 crystallites in UV–Vis–NIR region synthesized by sol–gel process. Mater Charact 64, 36–42 (2012)

    Article  CAS  Google Scholar 

  15. J. Zhu, Z. Zhao, D. Xiao, J. Li, X. Yang, Y. Wu, Characterization and catalytic activity in NO decomposition of La2−xSrxCuO4 (0 ≤ x ≤ 1) compounds with T* phase structure. Mater. Chem. Phys. 94, 257–260 (2005)

    Article  CAS  Google Scholar 

  16. A. Tavana, M. Akhavan, C. Draxl, First-principles study on lattice instabilities and structural phase transitions in Ba doped La2CuO4. Physica C (2015). https://doi.org/10.1016/j.physc.2015.07.001

    Article  Google Scholar 

  17. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, Structural, magnetic and catalytic properties of La2−xBaxCuO4 (0 < x < 0.5) perovskite nanoparticles. Ceram. Int. 44, 18113–18122 (2018)

    Article  CAS  Google Scholar 

  18. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, Co2+ substituted La2CuO4/LaCoO3 perovskite nanocomposites: synthesis, properties and heterogeneous catalytic performance. N. J. Chem. 42, 18128–18142 (2018)

    Article  CAS  Google Scholar 

  19. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, Facile synthesis of Fe3+ doped La2CuO4/LaFeO3 perovskite nanocomposites: structural, optical, magnetic and catalytic properties. Mater. Sci. Semicond. Process. 100, 225–235 (2019)

    Article  CAS  Google Scholar 

  20. N. Sivakumar, S. Saha, N. Bandaru et al., Development of MAPbI3.H2O and MAPbI3 perovskite solar cells using TiO2 and P3HT as charge transport layers. J. Mater. Sci. Mater. Electron. 35, 223 (2024)

    Article  CAS  Google Scholar 

  21. X. Zhou, Q. Cao, Y. Hu, J. Gao, Y. Xu, Sensing behavior and mechanism of La2CuO4–SnO2 gas sensors. Sens. Actuators B 77(1–2), 443–446 (2001)

    Article  CAS  Google Scholar 

  22. M. Velasquez, A. Santamaria, C.B. Dupeyrat, Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst. Appl. Catal. B 160–161, 606–613 (2014)

    Article  Google Scholar 

  23. O.V. Komova, S.A. Mukha, O.V. Netskina, G.V. Odegova, A.A. Pochtar, A.V. Ishchenko, V.I. Simagina, A solid glycine-based precursor for the preparation of La2CuO4 by combustion method. Ceram. Int. 41, 1869–1878 (2015)

    Article  CAS  Google Scholar 

  24. K.M. Batoo, M.F. Ijaz, A. Imran et al., Plasmonic Au nanoparticles enhanced photovoltaic characteristics of perovskite BiFeO3 nanostructures. J. Mater. Sci. Mater. Electron. 35, 159 (2024)

    Article  CAS  Google Scholar 

  25. X. Chen, K. Tang, S. Zeng, Q. Hao, D. Wang, Z. Gao, Y. Wang, Fluorination of La2−xSrxCuO4 (x = 0, 0.15, 0.3) and study on the crystal structures, magnetic properties of their fluorinated products. J. Alloys Compds 626, 239–244 (2015)

    Article  CAS  Google Scholar 

  26. L. Gao, X. Wang, H.T. Chua, S. Kawi, Growth of La2CuO4 nanofibers under a mild condition by using single walled carbon nanotubes as templates. J. Solid-State Chem. 179, 2036–2040 (2006)

    Article  CAS  Google Scholar 

  27. M. Sukumar, L. John Kennedy, J. Judith Vijaya, B. Al-Najar, M. Bououdina, G. Mudhana, Structural, optical, and magnetic properties of Ca2+ doped La2CuO4 perovskite nanoparticles. Vacuum 167, 407–415 (2019)

    Article  CAS  Google Scholar 

  28. Z. Li, W. Zhang, C. Yuan, Y. Su, Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties. RSC Adv. 7(21), 12931–12937 (2017)

    Article  CAS  Google Scholar 

  29. X. Dai, J. Cheng, Z. Li, M. Liu, Y. Ma, X. Zhang, Reduction kinetics of lanthanum ferrite perovskite for the production of synthesis gas by chemical-looping methane reforming. Chem. Eng. Sci. 153, 236–245 (2016)

    Article  CAS  Google Scholar 

  30. M. Sundararajan, M. Sukumar, C.S. Dash, A. Sutha, S. Suresh, M. Ubaidullah, A.M. Al-Enizi, M.K. Raza, D. Kumar, A comparative study on NiFe2O4 and ZnFe2O4 spinel nanoparticles: structural, surface chemistry, optical, morphology and magnetic studies. Physica B 644, 414232 (2022)

    Article  CAS  Google Scholar 

  31. N. Subhashini, S. Revathi, M. Ubaidullah, A.M. Al-Enizi, S. Muthulakshmi, D. Thiripurasundari, S.F. Shaikh, A. Nafady, M.M. Abdulhameed, N.B. Alanzi, R.I. Alkhalifah, C.S. Dash, M. Sundararajan, M. Sukumar, Dalton Trans. 52, 2735–2748 (2023)

    Article  CAS  PubMed  Google Scholar 

  32. V.B. Kumar, D. Mohanta, Formation of nanoscale tungsten oxide structures and colouration characteristics. Bull. Mater. Sci. 34, 435–442 (2011)

    Article  CAS  Google Scholar 

  33. P. Sankudevan, R.V. Sakthivel, A. Prakasam, A.M. Al Enizi, M. Ubaidullah, B. Pandit, C.S. Dash, S. Revathi, A. Roniboss, M. Sundararajan, Enhancement of luminescence mechanisms in structural, morphological, and catalytic properties of undoped CuCr2O4 and Mn-doped CuCr2O4. J. Clust. Sci. 34, 1527–1534 (2023)

    Article  CAS  Google Scholar 

  34. H. Sabeeh, S. Musaddiq, M. Shahid, M.A. Khan, M. Sher, M.F. Warsi, Rare earth substituted nanocrystalline LaFeO3 perovskites and their composites with reduced graphene oxide for enhanced photocatalytic and other potential applications. Mater. Res. Express 5(6), 065062 (2018)

    Article  Google Scholar 

  35. D.V. Dharmadhikari, S.K. Nikam, A.A. Athawale, Template free hydrothermal synthesis and gas sensing application of lanthanum cuprate (La2CuO4): effect of precursors on phase formation and morphology. J. Alloys Compds 590, 486–493 (2014)

    Article  CAS  Google Scholar 

  36. K. Mathankumar, M. Sukumar, C.S. Dash, M. Sundararajan, M. Ubaidullah, A.M. Al Enizi, A. Sutha, M.K. Raza, J.A. Dhanraj, D. Kumar, Facile synthesis, characterization, catalytic and photocatalytic activity of multiferroic BiFeO3 perovskite nanoparticles. J. Inorg. Organomet. Polym. Mater. 32, 3476–3487 (2022)

    Article  CAS  Google Scholar 

  37. S. Muthulakshmi, D. Thiripurasundari, N. Subhashini, A. Kumar, S. Revathi, M. Ubaidullah, B. Pandit, M. Gupta, S.S. Sehgal, C.S. Dash, C. Subashini, M. Sundararajan, M. Sukumar, M. Agila, H. Payal, Facile synthesis, characterization, and photocatalytic performance of Bi1−xLaxFeO3 (0 ≤ x ≤ 0.25) perovskite nanoparticles. Mater. Sci. Eng. B 298, 116919 (2023)

    Article  CAS  Google Scholar 

  38. N. Vidyarajan, L.K. Alexander, Strain induced optical properties of perovskite LaFeO3. Mater. Res. Express 6(1), 015610 (2018)

    Article  Google Scholar 

  39. P. Sumalin, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, S. Maensiri, Structure, magnetic, and dielectric properties of Ti-doped LaFeO3 ceramics synthesized by polymer pyrolysis method. Mater. Res. Bull. 67, 118–125 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSPD2024R682), King Saud University, Riyadh, Saudi Arabia for the support.

Funding

This work is funded by Researchers Supporting Project number (RSPD2024R682) King Saud University, Riyadh Saudi Arabia for the support.

Author information

Authors and Affiliations

Authors

Contributions

M. Sukumar contributed toward data curation, writing the original draft, review, and editing; Deepa Simon contributed toward resources; Anuj Kumar contributed toward review, editing, and resources; Mohd Ubaidullah contributed toward resources; S. Yuvaraj contributed toward conceptualization and methodology; Sandeep Kumar contributed toward resources; A. Sutha contributed toward data curation; K. Banupriya contributed toward visualization; C. Subashini contributed toward resources; Manish Gupta contributed toward visualization; A. Bhaskaran contributed toward resources; M. Sundararajan contributed toward data curation, writing the original draft, review, and project administration; and Ala Manohar contributed toward resources.

Corresponding authors

Correspondence to M. Sukumar, Mohd Ubaidullah, S. Yuvaraj or M. Sundararajan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukumar, M., Simon, D., Kumar, A. et al. A comparative study of structural, optical, and magnetic properties of LaFeO3 and La2CuO4 perovskite nanoparticles. J Mater Sci: Mater Electron 35, 949 (2024). https://doi.org/10.1007/s10854-024-12704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12704-3

Navigation