Skip to main content
Log in

Peanut-shell derived hard carbon as potential negative electrode material for sodium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sulphur-free hard carbon from peanut shells has been successfully synthesized. Pre-treatment of potassium hydroxide (KOH) plays a crucial role in the enhancement of physical and electrochemical properties of synthesized hard carbon, specifically enhancing the active surface area. Field Emission Scanning Electron Microscopy (FESEM) analysis also supports the enhanced BET surface area and distribution of pores. Raman spectroscopy shows the carbonized product as hard carbon. X-ray photoelectron spectroscopy (XPS) provides the presence of oxygen-functionalized hard carbon. XRD pattern confirms the amorphous nature of the carbon. Electrochemical impedance spectroscopy indicates the charge transfer kinetics, which also shows that the charge transfer resistance of HC-800K7 is minimal among all KOH-pre-treated samples. An initial specific capacity of 320 mAhg−1 has been recorded for the HC-800K7 sample at 0.1 Ag−1 current rate. After 500 cycles, the reversible charge capacity is found to retain at 231 mAhg−1. It gives 73.13% capacity retention after 500 cycles. Cyclic voltammetry shows the formation of SEI at the first few cycles and thereafter the SEI stabilized. HC-800K7 delivers high capacity and longer cycle stability. The results show that KOH activation enhances the electrochemical performance of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

Data availability

The corresponding author will provide the datasets generated and analysed during the current investigation upon reasonable request.

References

  1. M.F. Aziz, N.A. Shamsuri, M.H. Hamsan, Y.M. Yusof, M.A. Azam, S.B. Aziz, H. Rusdi, M.F.Z. Kadir, M.F. Shukur, J. Appl. Polym. Sci. 141, 1 (2024). https://doi.org/10.1002/app.54781

    Article  CAS  Google Scholar 

  2. N.A. Shamsuri, M.H. Hamsan, M.F. Shukur, Y. Alias, S.N.A. Halim, S.B. Aziz, A.H. Jahidin, M. Sulaiman, L. Yuwana, S.O.J. Siong, N.M. Sarih, M.F.Z. Kadir, J. Energy Storage 75, 109559 (2024). https://doi.org/10.1016/j.est.2023.109559

    Article  Google Scholar 

  3. S.B. Aziz, R.T. Abdulwahid, S.J. Mohammed, D.M. Aziz, M.H. Hamsan, N.A. Halim, S.I. Al-Saeedi, W.O. Karim, H.J. Woo, M.F.Z. Kadir, J. Ind. Eng. Chem. 130, 673 (2024). https://doi.org/10.1016/j.jiec.2023.11.044

    Article  CAS  Google Scholar 

  4. P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. (2018). https://doi.org/10.1002/anie.201703772

    Article  Google Scholar 

  5. H.S. Hirsh, Y. Li, D.H.S. Tan, M. Zhang, E. Zhao, Y.S. Meng, Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202001274

    Article  Google Scholar 

  6. E. Irisarri, A. Ponrouch, M.R. Palacin, J. Electrochem. Soc. 162, A2476 (2015). https://doi.org/10.1149/2.0091514jes

    Article  CAS  Google Scholar 

  7. W.T. Jing, C.C. Yang, Q. Jiang, J. Mater. Chem. A 8, 2913 (2020). https://doi.org/10.1039/C9TA11782B

    Article  CAS  Google Scholar 

  8. X. Liang, C. Chang, W. Guo, X. Jiang, C. Xiong, X. Pu, ChemElectroChem 6, 5721 (2019). https://doi.org/10.1002/celc.201901696

    Article  CAS  Google Scholar 

  9. J. Ni, L. Li, J. Lu, ACS Energy Lett. 3, 1137 (2018). https://doi.org/10.1021/acsenergylett.8b00312

    Article  CAS  Google Scholar 

  10. M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Adv. Mater. 29, 1 (2017). https://doi.org/10.1002/adma.201700622

    Article  CAS  Google Scholar 

  11. Q. Pan, Z. Tong, Y. Su, S. Qin, Y. Tang, Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202103912

    Article  Google Scholar 

  12. Z. Hu, Q. Liu, S.L. Chou, S.X. Dou, Adv. Mater. (2017). https://doi.org/10.1002/adma.201700606

    Article  PubMed  Google Scholar 

  13. H. Fan, P. Mao, H. Sun, Y. Wang, S.S. Mofarah, P. Koshy, H. Arandiyan, Z. Wang, Y. Liu, Z. Shao, Mater. Horizons 9, 524 (2022). https://doi.org/10.1039/D1MH01587G

    Article  CAS  Google Scholar 

  14. M.Á. Muñoz-Márquez, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Adv. Energy Mater. 7, 1 (2017). https://doi.org/10.1002/aenm.201700463

    Article  CAS  Google Scholar 

  15. M.R. Panda, A. Raj, A. Ghosh, A. Kumar, D. Muthuraj, S. Sau, W. Yu, Y. Zhang, A.K. Sinha, M. Weyland, Q. Bao, S. Mitra, Nano Energy 64, 103951 (2019). https://doi.org/10.1016/j.nanoen.2019.103951

    Article  CAS  Google Scholar 

  16. Y. Jiang, Y. Wang, J. Ni, L. Li, InfoMat 3, 339 (2021). https://doi.org/10.1002/inf2.12175

    Article  CAS  Google Scholar 

  17. J. Wang, Z. Li, Q. Wang, H. Sun, H.J. Woo, S.B. Aziz, N.Z.N. Husin, R.T. Subramaniam, B. Wang, ACS Mater. Lett. 6, 222 (2024). https://doi.org/10.1021/acsmaterialslett.3c01301

    Article  CAS  Google Scholar 

  18. I.E. Moctar, Q. Ni, Y. Bai, F. Wu, C. Wu, Funct. Mater. Lett. (2018). https://doi.org/10.1142/S1793604718300037

    Article  Google Scholar 

  19. Y. Wan, Y. Liu, D. Chao, W. Li, D. Zhao, Nano Mater. Sci. 5, 189 (2023). https://doi.org/10.1016/j.nanoms.2022.02.001

    Article  CAS  Google Scholar 

  20. H. Moon, A. Innocenti, H. Liu, H. Zhang, M. Weil, M. Zarrabeitia, S. Passerini, Chemsuschem (2023). https://doi.org/10.1002/cssc.202201713

    Article  PubMed  Google Scholar 

  21. C.D.M.S. Rios, L. Simonin, A. De Geyer, C.M. Ghimbeu, C. Dupont, Energies (2020). https://doi.org/10.3390/en13143513

    Article  Google Scholar 

  22. C. Nita, B. Zhang, J. Dentzer, C.M. Ghimbeu, J. Energy Chem. 58, 207 (2021). https://doi.org/10.1016/j.jechem.2020.08.065

    Article  CAS  Google Scholar 

  23. Y. Li, Y.S. Hu, M.M. Titirici, L. Chen, X. Huang, Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201600659

    Article  Google Scholar 

  24. A. Adamson, R. Väli, M. Paalo, J. Aruväli, M. Koppel, R. Palm, E. Härk, J. Nerut, T. Romann, E. Lust, A. Jänes, RSC Adv. 10, 20145 (2020). https://doi.org/10.1039/d0ra03212c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. F. Luna-Lama, J. Morales, A. Caballero, Materials (Basel) (2021). https://doi.org/10.3390/ma14205995

    Article  PubMed  Google Scholar 

  26. M. Wahid, Y. Gawli, D. Puthusseri, A. Kumar, M.V. Shelke, S. Ogale, ACS Omega 2, 3601 (2017). https://doi.org/10.1021/acsomega.7b00633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Roquia, A.K.H. Alhashmi, B.H.A. Alhasmi, F. Nanotub, Carbon Nanostruct. 29, 860 (2021). https://doi.org/10.1080/1536383X.2021.1900123

    Article  CAS  Google Scholar 

  28. L. Bottoni, H. Darjazi, L. Sbrascini, A. Staffolani, S. Gabrielli, G. Pastore, A. Tombesi, F. Nobili, ChemElectroChem 10, 1 (2023). https://doi.org/10.1002/celc.202201117

    Article  CAS  Google Scholar 

  29. K. Yu, X. Wang, H. Yang, Y. Bai, C. Wu, J. Energy Chem. 55, 499 (2021). https://doi.org/10.1016/j.jechem.2020.07.025

    Article  CAS  Google Scholar 

  30. T. Yin, Z. Zhang, L. Xu, C. Li, D. Han, ChemistryOpen (2024). https://doi.org/10.1002/open.202300178

    Article  PubMed  Google Scholar 

  31. T. Huang, D.C. Peng, Z. Chen, X.H. Xia, Y.X. Chen, H.B. Liu, X. Tan, New Carbon Mater. 37, 1125 (2022). https://doi.org/10.1016/S1872-5805(21)60069-0

    Article  CAS  Google Scholar 

  32. G. Murali, S. Harish, S. Ponnusamy, J. Ragupathi, H.A. Therese, M. Navaneethan, C. Muthamizhchelvan, Appl. Surf. Sci. 492, 464 (2019). https://doi.org/10.1016/j.apsusc.2019.06.142

    Article  CAS  Google Scholar 

  33. X. Ren, S.D. Xu, S. Liu, L. Chen, D. Zhang, L. Qiu, J. Electroanal. Chem. 841, 63 (2019). https://doi.org/10.1016/j.jelechem.2019.04.033

    Article  CAS  Google Scholar 

  34. X. Zhao, Y. Xu, Chemsuschem 11, 202–208 (2018). https://doi.org/10.1002/cssc.201701759

    Article  CAS  PubMed  Google Scholar 

  35. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano (2011). https://doi.org/10.1021/nn200493r

    Article  PubMed  PubMed Central  Google Scholar 

  36. C. Bommier, T.W. Surta, M. Dolgos, X. Ji, Nano Lett. (2015). https://doi.org/10.1021/acs.nanolett.5b01969

    Article  PubMed  Google Scholar 

  37. T. Rhimi, G. Leroy, B. Duponchel, K. Khirouni, S. Guermazi, M. Toumi, Ionics (Kiel). 24, 1305 (2018). https://doi.org/10.1007/s11581-017-2306-4

    Article  CAS  Google Scholar 

  38. G. Hasegawa, K. Kanamori, N. Kannari, J. Ozaki, K. Nakanishi, T. Abe, J. Power. Sources 318, 41 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.013

    Article  CAS  Google Scholar 

  39. A.C. Lazanas, M.I. Prodromidis, ACS Meas. Sci. Au. (2023). https://doi.org/10.1021/acsmeasuresciau.2c00070

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Solar Research and Development Centre, Pandit Deendayal Energy University (PDEU) for providing necessary facilities to carry out the work. We would like to thank Malaviya National Institute of Technology, Jaipur for providing facility for XPS characterisation of synthesized material. The authors thank SERB, Dept. of Science and Technology, Govt. of India for proving grants through project no. (SERB/2018/002067) and (DST/TMD/MES/2K17/32(G)) to carry out the present work.

Author information

Authors and Affiliations

Authors

Contributions

Kenil Rajpura: Methodology, data curation, writing-original draft, YashKumar Patel and Roma Patel: Investigation, formal Analysis, Writing, Indrajit Mukhopadhyay: Conceptualization, review, editing and supervision. The finished manuscript has received the unanimous approval of all authors.

Corresponding author

Correspondence to Indrajit Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajpura, K., Patel, Y., Patel, R. et al. Peanut-shell derived hard carbon as potential negative electrode material for sodium-ion battery. J Mater Sci: Mater Electron 35, 951 (2024). https://doi.org/10.1007/s10854-024-12696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12696-0

Navigation