Skip to main content
Log in

Low hysteresis, high sensitivity, fast response, and recovery time of humidity sensor based on Schiff bases material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Schiff bases compound 2-((2-chloro-4-methylphenylimino)methyl)-5diethylamino)phenol (hereafter L4 compound) has been synthesized and was used for the first time in the fabrication of sensor and to test its humidity sensing properties. The solution of L4 compound was deposited on interdigitated Ag–Pd electrodes using drop-casting technique. The scanning electron micrographs (SEM images) revealed that the surface morphology consisted of flat surface along with pores and pore channels of various shapes and sizes. Porosity and conduits facilitated and accommodated more H2O molecules and played key role in the sensing mechanism. When applied frequency was increased from 25 Hz to 2 MHz, the capacitance of the device was decreased from 48.8 to 3.92 pF. However, when humidity was changed from 39.4 to 90%RH the capacitance of the device was enhanced from 8.68 × 10−10 to 4.1 × 10−9 Farad. The regression or goodness of fit (R2) values were 0.96 and 0.94 which are very close to unity and represented the best fit of both the curves to improve linearity. The L4 compound-based sensor showed rapid response time (3.5 s) and recovery time (9.4 s), which are much quicker than our previous published results. The present L4-based sensor showed high sensitivity of 47,299%, which is higher than conventional humidity sensor. The hysteresis of the sensor was low (3.63%). Thus, the rapid response/recovery time, high sensitivity, and low hysteresis of L4 compound appear to be very promising candidate for efficient capacitive humidity sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

On reasonable request, the corresponding author will make available the datasets used and/or created during this investigation. The experimental work and language of the manuscript are also unique. There was no evidence of plagiarism in the submitted manuscript. If the reviewer insists on seeing the evidence, we would gladly deliver it to them in a plagiarized form.

References

  1. A. Falco, F.C. Loghin, M. Becherer, P. Lugli, J.F. Salmerón, A. Rivadeneyra, Low-cost gas sensing: dynamic self-compensation of humidity in CNT-based devices. ACS Sens. 4, 3141 (2019)

    CAS  PubMed  Google Scholar 

  2. S.S. Balpande, R.S. Pande, R.M. Patrikar, Design and low cost fabrication of green vibration energy harvester. Sens. Actuators A 251, 134–141 (2016). https://doi.org/10.1016/j.sna.2016.10.012

    Article  CAS  Google Scholar 

  3. M.M. Rahman, S.B. Khan, A.M. Asiri, Fabrication of smart chemical sensors based on transition-doped-semiconductor nanostructure materials with µ-chips. PLoS ONE 9, e85036 (2014). https://doi.org/10.1371/journal.pone.0085036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J.G.D. Hester, J. Kimionis, M.M. Tentzeris, Printed motes for IoT wireless networks: state of the art, challenges, and outlooks. IEEE Trans. Microw. Theory Tech. 65, 1819 (2017)

    Google Scholar 

  5. J. Wu, K. Tao, Y. Guo, Z. Li, X. Wang, Z. Luo, S. Feng, C. Du, D. Chen, J. Miao, L.K. Norford, A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Adv. Sci. 4, 1600319 (2017)

    Google Scholar 

  6. A.D. Smith, Q. Li, A. Anderson, A. Vyas, V. Kuzmenko, M. Haque, L.G.H. Staaf, R. Lundgren, P. Enoksson, Toward CMOS compatible wafer-scale fabrication of carbon-based microsupercapacitors for IoT. J. Phys.: Conf. Ser. 1052, 012143 (2018)

    Google Scholar 

  7. M.V. Kulkarni, A.K. Viswanath, P. Khanna, Synthesis and humidity sensing properties of conducting polymer (N-methyl aniline) doped with different acids. Sens. Actuators B 115, 140–149 (2006)

    CAS  Google Scholar 

  8. X.-J. Lv, M.-S. Yao, G.-E. Wang, Y.-Z. Li, G. Xu, A new 3D cupric coordination polymer as chemiresistor humidity sensor: narrow hysteresis, high sensitivity, fast response and recovery. Sci. China Chem. 60(9), 1197–1204 (2017)

    CAS  Google Scholar 

  9. M.U. Rahman, H. Gul, Z. ur Rahman, S. Zulfiqar, R. Khan, B. Ullah, I. Ahmad, A. Saeed, K. Alamgir, M. Ullah, J. Fan, Electrical and hysteric properties of organic compound-based humidity sensor and its dualistic interactive approach to H2O molecules. Mater. Today Commun. 29, 102882 (2021)

    Google Scholar 

  10. R.A. Shaukat, M.U. Khan, Q.M. Saqib, M.Y. Chougale, J. Kim, J. Bae, All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuators B 345, 130371 (2021)

    CAS  Google Scholar 

  11. M.U. Rahman, G. Shah, A. Ullah, Z.U. Rahman, A. Mehwish, R. Khan, B. Ullah, Zulfiqar, I. Ahmad, Resistive- and capacitive-type humidity and temperature sensors based on a novel caged nickel sulfide for environmental monitoring. J. Mater. Sci.: Mater. Electron. 31, 3557–3563 (2020)

    Google Scholar 

  12. H. Yang, Q. Ye, R. Zeng, J. Zhang, L. Yue, M. Xu, Z.-J. Qiu, D. Wu, Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer. Sensors 17, 2415 (2017)

    PubMed  PubMed Central  Google Scholar 

  13. U.V. Patil, C.S. Rout, D.J. Late, Impedimetric humidity sensor based on α-Fe2O3 nanoparticles. Adv. Device Mater. 1(3), 88–92 (2015)

    Google Scholar 

  14. C.L. Cao, C.G. Hu, L. Fang, S.X. Wang, Y.S. Tian, C.Y. Pan, Humidity sensor based on multi-walled carbon nanotubes thin films. J. Nanomater. 2011, 1–5 (2011). https://doi.org/10.1155/2011/707303

    Article  CAS  Google Scholar 

  15. D. Hernández-Rivera, G. Rodríguez-Roldán, R. Mora-Martınez, E. Suaste-Gómez, A capacitive humidity sensor based on an electrospun PVDF/graphene membrane. Sensors 17(5), 1009 (2017)

    PubMed  PubMed Central  Google Scholar 

  16. P.G. Su, W.L. Shiu, M.S. Tsai, Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol–gel film. Sens. Actuators B 216, 467 (2015)

    CAS  Google Scholar 

  17. M.U. Rehman, M. Imran, H. Zia-Ur-Rehman, A. Badshah, A. Shah, G. Shah, Humidity-sensing and DNA-binding ability of bis(4-benzylpiperazine-1-carbodithioato-k2S,S′) nickel(II). J. Coord. Chem. 68(2), 295–307 (2015)

    CAS  Google Scholar 

  18. D. Jung, J. Kim, G.S. Lee, Enhanced humidity-sensing response of metal oxide coated carbon nanotube. Sens. Actuators A 223, 11 (2015)

    CAS  Google Scholar 

  19. Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137, 649 (2009)

    CAS  Google Scholar 

  20. Z. Zhao, M. Knight, S. Kumar, E.T. Eisenbraun, M.A. Carpenter, Humidity effects on Pd/Au-based all-optical hydrogen sensors. Sens. Actuators B 129, 726 (2008)

    CAS  Google Scholar 

  21. R. Srivastava, Investigation on temperature sensing of nanostructured zinc oxide synthesized via oxalate route. J. Sens. Technol. 2, 8 (2012)

    CAS  Google Scholar 

  22. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B 23, 135 (1995)

    CAS  Google Scholar 

  23. S. Begum, M.U. Rahman, S. Al Otaibi, K. Althubeiti, N. Nazarova, Zulfiqar, B. Ullah, R. Khan, High sensitivity and low hysteresis of humidity sensor based on imidazole derivative. J. Mater. Sci.: Mater. Electron. 34, 920 (2023). https://doi.org/10.1007/s10854-023-10349-2

    Article  CAS  Google Scholar 

  24. M.-H. You, X. Yan, J. Zhang, X.-X. Wang, X.-X. He, M. Yu, X. Ning, Y.-Z. Long, Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res. Lett. 12, 360 (2017). https://doi.org/10.1186/s11671-017-2139-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.A. Shah, Z. Radzi, N. Abu-Osman, Design and development for capacitive humidity sensor applications of lead-free Ca Mg, Fe, Ti-oxides based electro-ceramics with improved sensing properties via physisorption. Sensors 16(7), 1135 (2016)

    PubMed  PubMed Central  Google Scholar 

  26. Z. Wang, C. Song, H. Yin, J. Zhang, Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires array at room temperature. Sens. Actuators A 235, 234–239 (2015)

    CAS  Google Scholar 

  27. X. Song, Q. Qi, T. Zhang, C. Wang, A humidity sensor based on KCl-doped SnO2 nanofibers. Sens. Actuators B 138, 368–373 (2009)

    CAS  Google Scholar 

  28. A. Din, Kh.S. Karimov, K. Akhtar, M.I. Khan, M.T.S. Chani, M.A. Khan, A.M. Asiri, S.B. Khan, Impedimetric humidity sensor based on the use of SnO2–Co3O4 spheres. J. Mater. Sci.: Mater. Electron. 28, 4260–4266 (2017)

    CAS  Google Scholar 

  29. S. Mendes, O. Kurapova, P. Faia, V. Pazheltsev, A. Zaripov, V. Konakov, Polyantimonic acid-based materials evaluated as moisture sensors at ambient temperature. J. Solid State Electrochem. 27, 611–625 (2023)

    CAS  Google Scholar 

  30. P. Guo, B. Tian, J. Liang, X. Yang, G. Tang, Q. Li, Q. Liu, K. Zheng, X. Chen, W. Wu, An all-printed, fast-response flexible humidity sensor based on hexagonal-WO3 nanowires for multifunctional applications. Adv. Mater. 2304420, 1–10 (2023). https://doi.org/10.1002/adma.202304420

    Article  CAS  Google Scholar 

  31. H.M. Zhao, Y. Chen, X. Quan, X. Ruan, Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photo electrocatalytic degradation. Chin. Sci. Bull. 52, 1456–1457 (2007)

    CAS  Google Scholar 

  32. B. Cheng, B. Tian, C. Xie, Y. Xiao, S. Lei, Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 21, 1907–1912 (2011)

    CAS  Google Scholar 

  33. E.J. Connolly, G.M. O’Halloran, H.T.M. Pham, P.M. Sarro, P.J. French, Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications. Sens. Actuators A 99, 25–30 (2002)

    CAS  Google Scholar 

  34. L. Hu, Y. Li, Improved acetone sensing properties of flat sensors based on Co-SnO2 composite nanofibers. Chin. Sci. Bull. 56, 2644–2648 (2011)

    CAS  Google Scholar 

  35. S. Agarwal, G. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B 94, 290–293 (2003)

    Google Scholar 

  36. Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, K.S. Karimov, A humidity sensing origanic-inorganic composite for environmental monitoring. Sensors 13, 3615–3624 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. N.A.M. Safian, A. Anuar, A.-Z. Omar, T.M. Bawazeer, N. Alsenany, M.S. Alsoufi, A. Supangat, N.A. Roslan, Enhanced sensitivity of zinc phthalocyanine-based microporous humidity sensors by varying size of electrode gaps. Sens. Actuators B 343, 130158 (2021)

    Google Scholar 

  38. M.F. Afsar, M.A. Rafiq, A. Jamil, S. Fareed, F. Siddique, A.I.Y. Tok, M.M. ul Hasan, Development of high-performance bismuth sulfide nanobelts humidity sensor and effect of humid environment on its transport properties. ACS Omega 4, 2030–2039 (2019). https://doi.org/10.1021/acsomega.8b01854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Peng, X. Zheng, Z. Ma, H. Chen, S. Liu, Y. He, M. Li, Ni-pattern guided GaN nanowire-array humidity sensor with high sensitivity enhanced by UV photoexcitation. Sens. Actuators B 256, 367–373 (2018)

    CAS  Google Scholar 

  40. Q. Lin, Y. Li, M. Yang, Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers. Anal. Chim. Acta 748, 73–80 (2012)

    CAS  PubMed  Google Scholar 

  41. H. Yang, Q. Ye, R. Zeng, J. Zhang, L. Yue, M. Xu, Z.-J. Qiu, D. Wu, Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer. Sensors 17(10), 2415 (2017). https://doi.org/10.3390/s17102415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. B. Chitara, D.J. Late, S.B. Krupanidhi, C.N.R. Rao, Room-temperature gas sensors based on gallium nitride nanoparticles. Solid State Commun. 150(41–42), 2053–2056 (2010)

    CAS  Google Scholar 

  43. P. Qi, T. Zhang, J. Shao, B. Yang, T. Fei, R. Wang, A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sens. Actuators A 287, 93–101 (2019)

    CAS  Google Scholar 

  44. Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 129, 6070–6071 (2007)

    CAS  PubMed  Google Scholar 

  45. S. Kotresh, Y.T. Ravikiran, H.G.R. Prakash, S.C.V. Kumari, Polyaniline-titanium dioxide composite as humidity sensor at room temperature. Nanosyst.: Phys. Chem. Math. 7(4), 732–739 (2016)

    CAS  Google Scholar 

  46. W.C. Wang, Y.T. Tian, K. Li, E.Y. Lu, D.S. Gong, X.J. Li, Capacitive humidity-sensing properties of Zn2SiO4 film grown on silicon nanoporous pillar array. Appl. Surf. Sci. 273, 372–376 (2013)

    CAS  Google Scholar 

  47. S.A. Khan, M. Saqib, M.M. Rehman, H.M.M.U. Rehman, S.A. Rahman, Y. Yang, S. Kim, W.-Y. Kim, A full range flexible and printed humidity sensor based on a solution-processed P(VDF-TrFE)/graphene-flower composite. Nanomaterials 11, 1915 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. W. Xie, B. Liu, S. Xiao, H. Li, Y. Wang, D. Cai, D. Wang, L. Wang, Y. Liu, Q. Li, T. Wang, High performance humidity sensors based on CeO2 nanoparticles. Sens. Actuators B 215, 125–132 (2015)

    CAS  Google Scholar 

  49. X. Zhang, D. He, Q. Yang, M.Z. Atashbar, Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor. Chem. Eng. J. 433, 133751 (2022)

    CAS  Google Scholar 

  50. S. Arunachalam, A.A. Gupta, R. Izquierdo, F. Nabki, Suspended carbon nanotubes for humidity sensing. Sensors 18(5), 1655 (2018). https://doi.org/10.3390/s18051655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Z.-C. Chen, T.-L. Chang, K.-W. Su, H.-S. Lee, J.-C. Wang, Application of self-heating graphene reinforced polyvinyl alcohol nanowires to high-sensitivity humidity detection. Sens. Actuators B 327, 128934 (2021). https://doi.org/10.1016/j.snb.2020.128934

    Article  CAS  Google Scholar 

  52. M.U. Khan, G.H.M. Awais, J. Bae, All printed full range humidity sensor based on Fe2O3. Sens. Actuators A 311, 112072 (2020). https://doi.org/10.1016/j.sna.2020.112072

    Article  CAS  Google Scholar 

  53. B. Cheng, Z. Ouyang, B. Tian, Y. Xiao, S. Lei, Porous ZnAl2O4 spinel nanorods: high sensitivity humidity sensors. Ceram. Int. 39(7), 7379–7386 (2013). https://doi.org/10.1016/j.ceramint.2013.02.077

    Article  CAS  Google Scholar 

  54. H.Y. Wang, Y.Q. Wang, Q.F. Hu, X.J. Li, Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sens. Actuators B 166–167, 451–456 (2012). https://doi.org/10.1016/j.snb.2012.02.087

    Article  CAS  Google Scholar 

  55. N. Li, Y. Jiang, Y. Xiao, B. Meng, C. Xing, H. Zhang, Z. Peng, A fully inkjet-printed transparent humidity sensor based on a Ti3C2/Ag hybrid for touchless sensing of finger motion. Nanoscale 11, 21522 (2019)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Taif University Saudi Arabia, for supporting this work through a Project number (TU-DSPP-2024-59).

Funding

This research was funded by Taif university, Saudi Arabia, Project No. TU-DSPP-2024-59.

Author information

Authors and Affiliations

Authors

Contributions

This paper was written and revised collaboratively Syed Ghani Shah, Muneeb ur Rahman, Mateen Ullah, Ali Haider, Saqib Ali, Zulfiqar, and Rajwali Khan. Khaled Althubeiti, Sherzod Abdullaev, Sattam Al Otaibi, Mateen Ullah, Ali Haider, Saqib Ali, Zulfiqar, Shahid Iqbal, Noor Uddin, Nasir Rahman, and Rajwali Khan created the idea and mutual discussed the paper. Finally, Rajwali Khan submitted the paper.

Corresponding authors

Correspondence to Muneeb ur Rahman or Rajwali Khan.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.G., Rahman, M.u., Althubeiti, K. et al. Low hysteresis, high sensitivity, fast response, and recovery time of humidity sensor based on Schiff bases material. J Mater Sci: Mater Electron 35, 888 (2024). https://doi.org/10.1007/s10854-024-12676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12676-4

Navigation