Skip to main content
Log in

Hydrothermal synthesis of Zn-doped MoO3 nanoribbons with excellent triethylamine sensing performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Triethylamine is harmful to the internal organs of human body. The Zn-doped MoO3 nanoribbons are prepared by hydrothermal method and analyzed by XRD, SEM, BET, and XPS. The gas sensing test results reveal that Zn doping into MoO3 nanoribbons can improve its gas sensing performance efficiently and the optimal Zn doping concentration in MoO3 is 4 at.%. Finally, the gas sensing mechanism of Zn-doped MoO3 nanoribbons for triethylamine is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Li et al., Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments. Sens. Actuators B Chem. 36, 131579 (2022)

    Article  Google Scholar 

  2. Y. Wang et al., Highly selective gas sensor for rapid detection of triethylamine using PdRu alloy nanoparticles functionalized SnO2. Sens. Actuators B Chem. 379, 133205 (2023)

    Article  CAS  Google Scholar 

  3. Y. Sun et al., Nitrogen-doped ZnO microspheres with a yolk-shell structure for high sensing response of triethylamine. Sens. Actuators B Chem. 389, 13388 (2023)

    Article  Google Scholar 

  4. Q. Ma, S. Chu, H. Li, Flower-like In2O3/ZnO heterostructure with accelerated multi-orientation electron transport mechanism for superior triethylamine detection. Appl. Surf. Sci. 569, 151074 (2021)

    Article  CAS  Google Scholar 

  5. S. Zhang, P. Song, Q. Wang, Ultra-sensitive triethylamine gas sensor based on ZnO/MoO3 heterostructures with ppb level detection. Sens. Actuators B Chem. 379, 133239 (2023)

    Article  CAS  Google Scholar 

  6. F. Villanueva et al., Ambient levels and temporal trends of VOCs, including carbonyl compounds, and ozone at Cabañeros National Park border Spain. Atmos. Environ. 85, 256–265 (2014)

    Article  CAS  Google Scholar 

  7. T. Saidi et al., Exhaled breath analysis using electronic nose and gas chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuators B Chem. 257, 178–188 (2018)

    Article  CAS  Google Scholar 

  8. A.-L. Moriaux et al., Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis. Food Chem. 264, 255–262 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Fan, W. Wang, H. Guan, Sulfur vacancy-rich ZnIn2S4 microflower with 0001 facets for rapid sensing of triethylamine. Sens. Actuators B Chem. 374, 132826 (2023)

    Article  CAS  Google Scholar 

  10. S. Cao et al., TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J. Coll. Interface Sci. 607, 357–366 (2022)

    Article  CAS  Google Scholar 

  11. B. Shivaraj et al., Hydrothermal synthesis of ZnO nanotubes for CO gas sensing. Sens. Inter. 1, 100018 (2020)

    Article  Google Scholar 

  12. W. Guo, L. Huang, J. Zhang, Ni-doped SnO2/g-C3N4 nanocomposite with enhanced gas sensing performance for the effective detection of acetone in diabetes diagnosis. Sens. Actuators B Chem. 334, 129666 (2021)

    Article  CAS  Google Scholar 

  13. M. Kumaresan et al., TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorg. Chem. Commun. 129, 108663 (2021)

    Article  CAS  Google Scholar 

  14. Y. Wang, L. Yao, L. Xu, One-step solvothermal synthesis of hierarchical Wo3 hollow microspheres with excellent no gas sensing properties. Mater. Lett. 302, 130460 (2021)

    Article  CAS  Google Scholar 

  15. V. Ambardekar et al., Plasma sprayed CuO coatings for gas sensing and catalytic conversion applications. Sens. Actuators B Chem. 331, 129404 (2021)

    Article  CAS  Google Scholar 

  16. M. Gomaa et al., Gas sensing performance of sprayed NiO thin films toward NO2 gas. J. Alloys Compd. 885, 160908 (2021)

    Article  CAS  Google Scholar 

  17. D.B. Patil et al., Facile synthesis of MoO3 nanoplates based NO2 gas sensor: ultra-selective and sensitive. Chem. Phys. Lett. 782, 139025 (2021)

    Article  CAS  Google Scholar 

  18. M. Shkir et al., High performance of the rare earth (Er, Gd & Pr) doped MoO3 thin films for advanced applications towards ammonia gas sensing. J. Mater. Res. Technol. 20, 4556–4565 (2022)

    Article  CAS  Google Scholar 

  19. M. Alsaif, M.R. Field et al., Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing. Sens Actuators B Chem. 192, 196–204s (2014)

    Article  CAS  Google Scholar 

  20. H. Ji, W. Zeng, Y. Li, New insight into the gas-sensing properties of nanofiber-assembled and nanosheet-assembled hierarchical MoO3 structures. Phys. E Low Dimens. Syst. Nanostruct. 114, 113646 (2019)

    Article  CAS  Google Scholar 

  21. T. Li, W. Zeng, Y. Zhang, Nanobelt-assembled nest-like MoO3 hierarchical structure: hydrothermal synthesis and gas-sensing properties. Mater. Lett. 160, 1476–1479 (2015)

    Article  Google Scholar 

  22. J. Shen, S. Guo, C. Chen, Synthesis of Ni-doped α-MoO3 nanolamella and their improved gas sensing properties. Sens .Actuators B Chem. 252, 757–763 (2017)

    Article  CAS  Google Scholar 

  23. S. Yang, G. Lei, L. Tan, Fe-doped MoO3 nanoribbons for high-performance hydrogen sensor at room temperature. J. Alloys Compd. 877, 160200 (2021)

    Article  CAS  Google Scholar 

  24. Trabelsi et al., Improvement in ammonia gas sensing properties of Co doped MoO3 thin films prepared by cost effective nebulizer spray pyrolysis method. Results Phys. 43, 106036 (2022)

    Article  Google Scholar 

  25. Z.P. Tshabalala et al., Improved BTEX gas sensing characteristics of thermally treated TiO2 hierarchical spheres manifested by high-energy 001 crystal facets. Sens. Actuators B Chem. 338, 129774 (2021)

    Article  CAS  Google Scholar 

  26. L. Guo, F. Chen, N. Xie, Metal–organic frameworks derived tin-doped cobalt oxide yolk-shell nanostructures and their gas sensing properties. J. Colloid Interf Sci. 528, 53–62 (2018)

    Article  CAS  Google Scholar 

  27. S. Yang, Z. Chen, Z. Wang, In situ synthesis of MoS2-decorated Zn-doped MoO3 for outstanding hydrogen sensing at room temperature. Sens. Actuators B Chem. 367, 132026 (2022)

    Article  CAS  Google Scholar 

  28. D. Meng, R. Li, G. Wang, Synthesis of NiMoO4-functionalized MoO3 nanorods with enhanced TMA gas sensing properties. Sens. Actuators Reports. 4, 100104 (2022)

    Article  Google Scholar 

  29. L. Sui et al., Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sens. Actuators B Chem. 208, 406–414 (2015)

    Article  CAS  Google Scholar 

  30. L. Zhu et al., In situ enrichment amplification strategy enabling highly sensitive formaldehyde gas sensor. Sens. Actuators B: Chem. 354, 131206 (2022)

    Article  CAS  Google Scholar 

  31. R. Mo, D. Han, C. Yang, J. Tang, F. Wang, C. Li, MOF-derived porous Fe2O3 nanocubes combined with reduced graphene oxide for n-butanol room temperature gas sensing. Sens. Actuators B: Chem. 330, 129326 (2021)

    Article  CAS  Google Scholar 

  32. Z. Cao et al., Porous Mn-doped Co3O4 nanosheets: gas sensing performance and interfacial mechanism investigation with in situ DRIFTS. Sens. Actuators B: Chem. 353, 131155 (2022)

    Article  CAS  Google Scholar 

  33. S. Bai et al., WO3-ZnFe2O4 heterojunction and rGO decoration synergistically improve the sensing performance of triethylamine. Sens. Actuators B: Chem. 347, 130619 (2021)

    Article  CAS  Google Scholar 

  34. L. Sun et al., rGO decorated W doped BiVO4 novel material for sensing detection of trimethylamine. Sens. Actuators B: Chem. 298, 126749 (2019)

    Article  CAS  Google Scholar 

  35. Y. Zhao, X. Yuan, Y. Sun, Q. Wang, X.-Y. Xia, B. Tang, Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties. Sens. Actuators B: Chem. 323, 128663 (2020)

    Article  CAS  Google Scholar 

  36. Y. Zhang et al., Construction of hierarchical In2O3/In2S3 microsphere heterostructures for TEA detection. J. Mater. 8(6), 1113–1121 (2022)

    Google Scholar 

  37. X. Xiong et al., Selective response features of MXene loaded Co9S8@In2S3nanocomposites to triethylamine in gas mixtures. J. Alloys Comp. 969, 172408 (2023)

    Article  CAS  Google Scholar 

  38. H. Zhu, H. Ji, R. Zhang, Ppb-level butanone sensor based on porous spherical ZnCo2O4/ZnO through the synergy effects of Co2+ atoms and unique wrinkled structure. Sens. Actuators B Chem. 393, 134087 (2023)

    Article  CAS  Google Scholar 

  39. C. Li et al., Acetone gas sensor based on Nb2O5@ SnO2 hybrid structure with high selectivity and ppt-level sensitivity. Sens. Actuators B Chem. 393, 134144 (2023)

    Article  CAS  Google Scholar 

  40. W. Pan, Y. Zhang, D. Zhang, Self-assembly fabrication of titanium dioxide nanospheres-decorated tungsten diselenide hexagonal nanosheets for ethanol gas sensing application. Appl. Surf. Sci. 527, 146781 (2020)

    Article  CAS  Google Scholar 

  41. W. Liu, J. Wu, Y. Yang, Facile synthesis of three-dimensional hierarchical NiO microflowers for efficient room temperature H2S gas sensor. J. Mater. Sci. 29, 4624–4631 (2018)

    CAS  Google Scholar 

  42. C. Yang, Y. Yang, C. Zhang, High selectivity of Ag-doped Fe2O3 hollow nanofibers in H2S detection at room operating temperature. Sens. Actuators B Chem. 341, 129919 (2021)

    Article  CAS  Google Scholar 

  43. D. Zhang, Y. Cao, J. Wu, Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. Appl. Surf. Sci. 503, 144063 (2020)

    Article  CAS  Google Scholar 

  44. J. Zhang, T. Li, J. Guo, Two-step hydrothermal fabrication of CeO2-loaded MoS2 nanoflowers for ethanol gas sensing application. Appl. Surf. Sci. 568, 150942 (2021)

    Article  CAS  Google Scholar 

  45. L. Wang, S. Ma, J. Li, Mo-doped SnO2 nanotubes sensor with abundant oxygen vacancies for ethanol detection. Sens. Actuators B Chem. 347, 130642 (2021)

    Article  CAS  Google Scholar 

  46. L. Guo, H. Liang, D. An, One-step hydrothermal synthesis of uniform Ag-doped SnO2 nanoparticles for highly sensitive ethanol sensing. Physica E Low Dimens. Syst. Nanostruct. 151, 115717 (2023)

    Article  CAS  Google Scholar 

  47. Y. Tan, S. Wei, X. Liu, Neodymium oxide (Nd2O3) coupled tubular g-C3N4, an efficient dual-function catalyst for photocatalytic hydrogen production and NO removal. Sci. Total. Environ. 773, 145583 (2021)

    Article  CAS  PubMed  Google Scholar 

  48. J. Wang, Q. Wei, Q. Ma, Constructing Co@ N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural. Appl. Catal. B Environ. 263, 118339 (2020)

    Article  CAS  Google Scholar 

  49. S. Yang, K. Deng, J. Zhang, Synergy effect of Ag plasmonic resonance and heterostructure construction enhanced visible-light photoelectrochemical sensing for quercetin. Electrochim. Acta 371, 137772 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Chongqing Science and Technology Commission (cstc2021jcyj-msxmX0364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Guo.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Chen, K. & Wang, J. Hydrothermal synthesis of Zn-doped MoO3 nanoribbons with excellent triethylamine sensing performance. J Mater Sci: Mater Electron 35, 871 (2024). https://doi.org/10.1007/s10854-024-12624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12624-2

Navigation