Skip to main content
Log in

Seamless recovery and reusable photocatalytic activity of CVD grown atomically-thin WS2 films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-atom-thick two-dimensional layered transition metal dichalcogenides (TMDs) has shown appreciable capabilities as materials candidate for photocatalytic applications. In particular, atomically-thin tungsten disulfide (WS2) has shown attractive interest towards visible-light photocatalytic activity. In this work, we show that the atomically-thin WS2 films can be used as an effective photocatalyst with Methylene Blue (MB) as a model pollutant, under visible light irradiation. Further, we demonstrate that these WS2 thin film samples can be recovered effortlessly without losing its chemical and structural stability. The bi-layered WS2 films yielded a degradation efficiency of ~94% for MB dye. Recovery and reusability of the WS2 thin films were demonstrated without significant loss in the degradation-efficiency even after 4-cycles of degradation. This study may pave the way for the large-scale degradation and recycling of various effluents using recoverable thin-film photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data that support the findings of this study are included within the article (and any supplementary files).

References

  1. J. Di, J. Xia, H. Li, Z. Liu, Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: opportunities and challenges. Nano Energy 35, 79–91 (2017). https://doi.org/10.1016/j.checat.2021.01.002

    Article  CAS  Google Scholar 

  2. Y. Liu, H. Wang, X. Yuan, Y. Wu, H. Wang, Y. Tan et al., Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catal. 1(1), 44–68 (2021). https://doi.org/10.1016/j.checat.2021.01.002

    Article  CAS  Google Scholar 

  3. P. Senthil Kumar, M. Selvakumar, S. Babu, S. Jaganathan, S. Karuthapandian, S. Chattopadhyay, Novel CuO/chitosan nanocomposite thin film: facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv. 5(71), 57493–57501 (2015). https://doi.org/10.1039/c5ra08783j

    Article  CAS  Google Scholar 

  4. W. Ashraf, T. Fatima, K. Srivastava, M. Khanuja, Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects. Appl. Nanosci. 9(7), 1515–1529 (2019). https://doi.org/10.1007/s13204-019-00951-4

    Article  CAS  Google Scholar 

  5. T. de Oliveira Guidolin, N. Possolli, M. Polla, T. Wermuth, T. de Franco Oliveira, S. Eller et al., Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles. J. Clean. Prod. 318, 128556 (2021). https://doi.org/10.1016/j.jclepro.2021.128556

    Article  CAS  Google Scholar 

  6. J. Shi, D. Ma, G. Han, Y. Zhang, Q. Ji, T. Gao et al., Controllable growth and transfer of monolayer MoS2 on au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–10204 (2014). https://doi.org/10.1021/nn503211t

    Article  CAS  PubMed  Google Scholar 

  7. A. Sindhu, N. Shinde, S. Harish, M. Navaneethan, S. Eswaran, Recoverable and reusable visible-light photocatalytic performance of CVD grown atomically thin MoS2 films. Chemosphere 287, 132347 (2022). https://doi.org/10.1016/j.chemosphere.2021.132347

    Article  CAS  PubMed  Google Scholar 

  8. M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, Controlled exfoliation of monodispersed MoS2 layered nanostructures by a ligand-assisted hydrothermal approach for the realization of ultrafast degradation of an organic pollutant. RSC Adv. 6(111), 109495–109505 (2016). https://doi.org/10.1039/c6ra24355j

    Article  CAS  Google Scholar 

  9. M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv. 7(40), 24754–24763 (2017). https://doi.org/10.1039/c7ra03633g

    Article  CAS  Google Scholar 

  10. R. Abinaya, J. Archana, S. Harish, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan et al., Ultrathin layered MoS2 nanosheets with rich active sites for enhanced visible light photocatalytic activity. RSC Adv. 8(47), 26664–26675 (2018). https://doi.org/10.1039/c8ra02560f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Patel, M. Patel, C. Sumesh, Visible light enhanced photocatalytic performance of WS2 catalyst for the degradation of ternary dye mixture. AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0001154

    Article  Google Scholar 

  12. M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589

    Article  PubMed  Google Scholar 

  13. A. Chernikov, T. Berkelbach, H. Hill, A. Rigosi, Y. Li, B. Aslan et al., Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. (2014). https://doi.org/10.1103/PhysRevLett.113.076802

    Article  PubMed  Google Scholar 

  14. A. Katz, M. Redlich, L. Rapoport, H. Wagner, R. Tenne, Self-lubricating coatings containing fullerene-like WS2 nanoparticles for orthodontic wires and other possible medical applications. Tribol. Lett. 21(2), 135–139 (2006). https://doi.org/10.1007/s11249-006-9029-4

    Article  CAS  Google Scholar 

  15. T. Georgiou, R. Jalil, B. Belle, L. Britnell, R. Gorbachev, S. Morozov et al., Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2012). https://doi.org/10.1038/nnano.2012.224

    Article  CAS  PubMed  Google Scholar 

  16. N. Huo, S. Yang, Z. Wei, S. Li, J. Xia, J. Li, Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. (2014). https://doi.org/10.1038/srep05209

    Article  PubMed  PubMed Central  Google Scholar 

  17. G. Navale, C. Rout, K. Gohil, M. Dharne, D. Late, S. Shinde, Oxidative and membrane stress-mediated antibacterial activity of WS2and rGO-WS2 nanosheets. RSC Adv. 5(91), 74726–74733 (2015). https://doi.org/10.1039/c5ra15652a

    Article  CAS  Google Scholar 

  18. X. Zong, J. Han, G. Ma, H. Yan, G. Wu, C. Li, Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C 115(24), 12202–12208 (2011). https://doi.org/10.1021/jp2006777

    Article  CAS  Google Scholar 

  19. C. Rout, P. Joshi, R. Kashid, D. Joag, M. More, A. Simbeck et al., Superior field emission properties of layered WS2-RGO nanocomposites. Sci. Rep. (2013). https://doi.org/10.1038/srep03282

    Article  PubMed  PubMed Central  Google Scholar 

  20. Y. Sun, S. Gao, F. Lei, C. Xiao, Y. Xie, Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. Acc. Chem. Res. 48(1), 3–12 (2014). https://doi.org/10.1021/ar500164g

    Article  CAS  PubMed  Google Scholar 

  21. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, M. Potemski, Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale 7(23), 10421–10429 (2015). https://doi.org/10.1039/c5nr01536g

    Article  CAS  PubMed  Google Scholar 

  22. T. Cheiwchanchamnangij, W. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B (2012). https://doi.org/10.1103/physrevb.85.205302

    Article  Google Scholar 

  23. X. Zhang, Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42(21), 8187 (2013). https://doi.org/10.1039/C3CS60138B

    Article  CAS  PubMed  Google Scholar 

  24. S. Vattikuti, C. Byon, C. Reddy, Preparation and improved photocatalytic activity of mesoporous WS 2 using combined hydrothermal-evaporation induced self-assembly method. Mater. Res. Bull. 75, 193–203 (2016). https://doi.org/10.1016/j.materresbull.2015.11.059

    Article  CAS  Google Scholar 

  25. H. Sade, J. Lellouche, Preparation and characterization of WS2@SiO2 and WS2@PANI core-shell nanocomposites. Nanomaterials 8(3), 156 (2018). https://doi.org/10.3390/nano8030156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Fernández, G. Lassaletta, V. Jiménez, A. Justo, A. González-Elipe, J. Herrmann et al., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B Environ. 7(1–2), 49–63 (1995). https://doi.org/10.1016/0926-3373(95)00026-7

    Article  Google Scholar 

  27. A. Munshi, M. Shi, S. Thomas, M. Saunders, M. Spackman, K. Iyer et al., Magnetically recoverable Fe3O4@Au-coated nanoscale catalysts for the A3-coupling reaction. Dalton Trans. 46(16), 5133–5137 (2017). https://doi.org/10.1039/C7DT00058H

    Article  CAS  PubMed  Google Scholar 

  28. D.J. Cole-Hamilton, Homogeneous catalysis—New approaches to catalyst separation, recovery, and recycling. Science 299(5613), 1702–1706 (2003). https://doi.org/10.1126/science.1081881

    Article  CAS  PubMed  Google Scholar 

  29. R. Chianelli, The reactivity of MoS2 single crystal edge planes. J. Catal. 92(1), 56–63 (1985). https://doi.org/10.1016/0021-9517(85)90236-2

    Article  CAS  Google Scholar 

  30. M. Daage, R. Chianelli, Structure-function relations in molybdenum sulfide catalysts: The “Rim-Edge” model. J. Catal. 149(2), 414–427 (1994). https://doi.org/10.1006/jcat.1994.1308

    Article  CAS  Google Scholar 

  31. N. Dhas, A. Ekhtiarzadeh, K. Suslick, Sonochemical preparation of supported hydrodesulfurization catalysts. J. Am. Chem. Soc. 123(34), 8310–8316 (2001). https://doi.org/10.1021/ja010516y

    Article  CAS  PubMed  Google Scholar 

  32. S. Vattikuti, C. Byon, V. Chitturi, Selective hydrothermally synthesis of hexagonal WS2 platelets and their photocatalytic performance under visible light irradiation. Superlatt. Microstruct. 94, 39–50 (2016). https://doi.org/10.1016/j.spmi.2016.03.042

    Article  CAS  Google Scholar 

  33. V. Murugan, K. Meganathan, N. Shinde, S. Eswaran, Strain-mediated unusual bandgap bowing in continuous composition tuned monolayer Mo1−xWxS2 ternary alloys. Appl. Phys. Lett. 118(1), 013102 (2021). https://doi.org/10.1063/5.0022790

    Article  CAS  Google Scholar 

  34. N. Shinde, B. Ryu, K. Meganathan, B. Francis, C. Hong, S. Chandramohan et al., Large-scale atomically thin monolayer 2H-MoS2 field-effect transistors. ACS Appl. Nano Mater. 3(8), 7371–7376 (2020). https://doi.org/10.1021/acsanm.0c01235

    Article  CAS  Google Scholar 

  35. N. Shinde, B. Francis, M. Ramachandra Rao, B. Ryu, S. Chandramohan, S. Eswaran, Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition. APL Mater. 7(8), 081113 (2019). https://doi.org/10.1063/1.5095451

    Article  CAS  Google Scholar 

  36. L. Liu, B. Zhang, Y. Zhang, Y. He, L. Huang, S. Tan et al., Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J. Chem. Eng. Data 60(5), 1270–1278 (2015). https://doi.org/10.1021/je5009312

    Article  CAS  Google Scholar 

  37. H. Zeng, G. Liu, J. Dai, Y. Yan, B. Zhu, R. He et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. (2013). https://doi.org/10.1038/srep01608

    Article  PubMed  PubMed Central  Google Scholar 

  38. N. Babu Shinde, B. Deul Ryu, C. Hong, B. Francis, S. Chandramohan, E.S. Kumar, Growth Behavior, nucleation control and excellent optical properties of atomically thin WS2 thin films processed via Gas-phase chemical vapor deposition. Appl. Surf. Sci. 568, 150908 (2021). https://doi.org/10.1016/j.apsusc.2021.150908

    Article  CAS  Google Scholar 

  39. J. Park, W. Lee, T. Choi, S. Hwang, J. Myoung, J. Jung et al., Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors. Nanoscale 7(4), 1308–1313 (2015). https://doi.org/10.1039/C4NR04292A

    Article  CAS  PubMed  Google Scholar 

  40. A. Berkdemir, H. Gutiérrez, A. Botello-Méndez, N. Perea-López, A. Elías, C. Chia et al., Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. (2013). https://doi.org/10.1038/srep01755

    Article  PubMed Central  Google Scholar 

  41. R. Jha, P. Guha, An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two-dimensional semiconducting nanosheets. J. Mater. Sci. 52(12), 7256–7268 (2017). https://doi.org/10.1007/s10853-017-0962-4

    Article  CAS  Google Scholar 

  42. A. Pawbake, R. Waykar, D. Late, S. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces 8(5), 3359–3365 (2016). https://doi.org/10.1021/acsami.5b11325

    Article  CAS  PubMed  Google Scholar 

  43. H. Gutiérrez, N. Perea-López, A. Elías, A. Berkdemir, B. Wang, R. Lv et al., Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447–3454 (2012). https://doi.org/10.1021/nl3026357

    Article  CAS  PubMed  Google Scholar 

  44. P. Liu, T. Luo, J. Xing, H. Xu, H. Hao, H. Liu et al., Large-area WS2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-017-2329-9

    Article  PubMed  PubMed Central  Google Scholar 

  45. P. Liu, J. Zhang, D. Gao, W. Ye, Efficient visible light-induced degradation of rhodamine B by W(NxS1−x)2 nanoflowers. Sci. Rep. (2017). https://doi.org/10.1038/srep40784

    Article  PubMed  PubMed Central  Google Scholar 

  46. H. Mittal, M. Khanuja, Nanosheets- and nanourchins-like nanostructures of MoSe2 for photocatalytic water purification: kinetics and reusability study. Environ. Sci. Pollut. Res. 27(19), 23477–23489 (2019). https://doi.org/10.1007/s11356-019-06275-8

    Article  CAS  Google Scholar 

  47. Y. Wu, M. Su, J. Chen, Z. Xu, J. Tang, X. Chang et al., Superior adsorption of methyl orange by h-MoS2 microspheres: isotherm, kinetics, and thermodynamic studies. Dyes Pigm. 170, 107591 (2019). https://doi.org/10.1016/j.dyepig.2019.107591

    Article  CAS  Google Scholar 

  48. L. Ai, C. Zhang, L. Meng, Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg–Al layered double hydroxide. J. Chem. Eng. Data 56(11), 4217–4225 (2011). https://doi.org/10.1021/je200743u

    Article  CAS  Google Scholar 

  49. S. Harish, M. Navaneethan, J. Archana, A. Silambarasan, S. Ponnusamy, C. Muthamizhchelvan et al., Controlled synthesis of organic ligand passivated ZnO nanostructures and their photocatalytic activity under visible light irradiation. Dalton Trans. 44(22), 10490–10498 (2015). https://doi.org/10.1039/C5DT01572C

    Article  CAS  PubMed  Google Scholar 

  50. Q. Zhang, Y. Zhang, Z. Meng, W. Tong, X. Yu, Q. An, Constructing the magnetic bifunctional graphene/Titania nanosheet-based composite photocatalysts for enhanced visible-light photodegradation of MB and electrochemical ORR from polluted water. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-12504-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. D. Thakur, M. Sharma, R. Vaish, V. Balakrishnan, WS2 monolayer for piezo-phototronic dye degradation and bacterial disinfection. ACS Appl. Nano Mater. 4(8), 7879–7887 (2021). https://doi.org/10.1021/acsanm.1c01202

    Article  CAS  Google Scholar 

  52. P. Bakre, P. Volvoikar, A. Vernekar, S. Tilve, Influence of acid chain length on the properties of TiO2 prepared by sol-gel method and LC-MS studies of methylene blue photodegradation. J. Colloid Interface Sci. 474, 58–67 (2016). https://doi.org/10.1016/j.jcis.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  53. V. Mrunal, A. Vishnu, N. Momin, J. Manjanna, Cu2O nanoparticles for adsorption and photocatalytic degradation of methylene blue dye from aqueous medium. Environ. Nanotechnol. Monitoring Manag. 12, 100265 (2019). https://doi.org/10.1016/j.enmm.2019.100265

    Article  Google Scholar 

  54. Q. Shang, T. Zeng, K. Gao, N. Liu, Q. Cheng, G. Liao et al., A novel nitrogen heterocyclic ligand-based MOF: synthesis, characterization and photocatalytic properties. New J. Chem. 43(42), 16595–16603 (2019). https://doi.org/10.1039/C9NJ04371C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Science and Engineering Research Board (SERB), Department of Science and Technology, India for the financial support (Grant No. ECR/2016/000918 & CRG/2023/2938). We sincerely acknowledge SRMIST for the seed grant and startup grant for the establishment of MicroRaman spectrometer and UV-Vis-NIR spectrometer. We acknowledge Nanotechnology Research Center for providing support of characterization facilities.

Funding

Funding was supported by Science and Engineering Research Board, No: ECR/2016/000918, CRG/2023/2938.

Author information

Authors and Affiliations

Authors

Contributions

ASS, KM, SH, MN and SKE have conceived and designed the research work. ASS and KM have contributed to the implementation of the idea. All the authors have contributed to data analysis and writing of the manuscript.

Corresponding author

Correspondence to Senthil Kumar Eswaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5455 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhu, A.S., Meganathan, K., Harish, S. et al. Seamless recovery and reusable photocatalytic activity of CVD grown atomically-thin WS2 films. J Mater Sci: Mater Electron 35, 877 (2024). https://doi.org/10.1007/s10854-024-12615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12615-3

Navigation