Skip to main content
Log in

Finite element method simulation, design, and fabrication of micromachined high-frequency piezoelectric composite with hexagonal pillars for intravascular ultrasound imaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As the core component of the transducer, the property of the piezoelectric material determines the quality of the transducer. However, the traditional 1–3 piezoelectric composite is disturbed by the lateral and other spurious resonance in the application of high-frequency field, which results in the decrease of the vibration energy and acoustoelectric conversion efficiency for the ultrasound transducer. Herein, a novel 1–3 piezoelectric composite with hexagonal pillars is designed to suppress the influence of the lateral and other spurious resonance. In this paper, the finite element model of the 1–3 piezoelectric composite with hexagonal or square pillars used for 50 MHz is built. The specific design procedure and the optimum parameter of composite are exhibited by the FEM simulation. The vibration mode of the composite with hexagonal pillars is purer compared with the composite with square pillars. The effects of the side wall slope of the hexagonal pillars in composite are considered, and the value of the angle should be larger than 87° in the practical fabrication process. The composite with the hexagonal pillars is fabricated by the femtosecond laser lithography and the measured resonant impedance property agrees with the simulation results. These results provide a practicable method to design and fabricate the ultrahigh frequency ultrasonic transducer for intravascular ultrasound (IVUS) imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. S.J. Nicholls, I. Sipahi, P. Schoenhagen, T. Crowe, E.M. Tuzcu, S.E. Nissen, Application of intravascular ultrasound in anti-atherosclerotic drug development. Nat. Rev. Drug Discov. 5(6), 485–492 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. C. Peng, H. Wu, S. Kim, X. Dai, X. Jiang, Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. Sensors (Basel) (2021). https://doi.org/10.3390/s21103540

    Article  PubMed  PubMed Central  Google Scholar 

  3. N.W. Shammas, Q. Radaideh, W.J. Shammas, G.E. Daher, R.J. Rachwan, Y. Radaideh, The role of precise imaging with intravascular ultrasound in coronary and peripheral interventions. Vasc. Health Risk Manag. 15, 283–290 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H.M. Garcia-Garcia, B.D. Gogas, P.W. Serruys, N. Bruining, IVUS-based imaging modalities for tissue characterization: similarities and differences. Int. J. Cardiovasc. Imaging. 27(2), 215–224 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  5. C.L. de Korte, A.F. van der Steen, E.I. Céspedes, G. Pasterkamp, S.G. Carlier, F. Mastik, A.H. Schoneveld, P.W. Serruys, N.J.P.i.M. Bom, characterization of plaque components and vulnerability with intravascular ultrasound elastography. Phys. Med. Biol. 45(6), 1465 (2000)

    Article  PubMed  Google Scholar 

  6. S.K. Kirk, Recent advancements in ultrasound transducer: from material strategies to biomedical applications. BME Front. (2022). https://doi.org/10.34133/2022/9764501

    Article  Google Scholar 

  7. M.C. McDaniel, P. Eshtehardi, F.J. Sawaya, J.S. Douglas, H. Samady, Contemporary clinical applications of coronary intravascular ultrasound. JACC Cardiovasc. Interv. 4(11), 1155–1167 (2011)

    Article  PubMed  Google Scholar 

  8. Y. Li, Y. Li, R. Zhang, S. Li, Z. Liu, J. Zhang, Y.J.B. Fu, Progress in wearable acoustical sensors for diagnostic applications. Biosens. Bioelectron. (2023). https://doi.org/10.1016/j.bios.2023.115509

    Article  PubMed  PubMed Central  Google Scholar 

  9. X. Li, W. Wu, Y. Chung, W.Y. Shih, F.Q. Zhou, K.K. Shung, 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58(11), 2281–2288 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  10. J. Lee, J.Y. Moon, J. Chang, A 35 MHz/105 MHz dual-element focused transducer for intravascular ultrasound tissue imaging using the third harmonic. Sensors (2018). https://doi.org/10.3390/s18072290

    Article  PubMed  PubMed Central  Google Scholar 

  11. S. Yoon, J. Williams, B.J. Kang, C. Yoon, N. Cabrera-Munoz, J.S. Jeong, S.G. Lee, K.K. Shung, H.H. Kim, Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging. Sens. Actuat A-Phys. 228, 16–22 (2015)

    Article  CAS  Google Scholar 

  12. K. Jansen, G. van Soest, A.F. van der Steen, Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification. Ultrasound Med. Biol. 40(6), 1037–1048 (2014)

    Article  PubMed  Google Scholar 

  13. J. Lee, J. Jang, J.H. Chang, Oblong-shaped focused transducers for intravascular ultrasound imaging. IEEE Trans. Biomed. Eng. 64(3), 671–680 (2016)

    PubMed  Google Scholar 

  14. J.M. Cannata, T.A. Ritter, W.H. Chen, R.H. Silverman, K.K. Shung, Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50(11), 1548–1557 (2003)

    Article  PubMed  Google Scholar 

  15. J.H. Sung, E.Y. Jeong, J.S. Jeong, Intravascular ultrasound transducer by using polarization inversion technique for tissue harmonic imaging: modeling and experiments. IEEE Trans. Biomed. Eng. 67(12), 3380–3391 (2020)

    Article  PubMed  Google Scholar 

  16. G.R. Lockwood, D.H. Turnbull, F.S. Foster, Fabrication of high frequency spherically shaped ceramic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 41(2), 231–235 (1994)

    Article  Google Scholar 

  17. M.J. Zipparo, K.K. Shung, T.R. Shrout, Piezoceramics for high-frequency (50–100 MHz) single-element imaging transducers. IEEE. Ultrason. Sympos. Proc. (1996). https://doi.org/10.1109/ULTSYM.1996.584145

    Article  Google Scholar 

  18. D.E. Dausch, K.H. Gilchrist, J.B. Carlson, S.D. Hall, J.B. Castellucci, O.T. von Ramm, In vivo real-time 3-D intracardiac echo using PMUT arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61(10), 1754–1764 (2014)

    Article  PubMed  Google Scholar 

  19. J.H. Sung, J.S. Jeong, Development of high-frequency (> 60 MHz) intravascular ultrasound (IVUS) transducer by using asymmetric electrodes for improved beam profile. Sensors (Basel) (2018). https://doi.org/10.3390/s18124414

    Article  PubMed  Google Scholar 

  20. X. Ma, W. Cao, Single-crystal high-frequency intravascular ultrasound transducer with 40 µm axial resolution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67(4), 810–816 (2020)

    Article  PubMed  Google Scholar 

  21. X. Yan, K.H. Lam, X. Li, R. Chen, W. Ren, X. Ren, F.Q. Zhou, K.K. Shung, Lead-free intravascular ultrasound transducer using BZT-50BCT ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60(6), 1272–1276 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  22. B. Zhu, Z. Zhang, T. Ma, X. Yang, Y. Li, K.K. Shung, F.Q. Zhou, (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging. Appl. Phys. Lett. 106(17), 173504 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  23. H. Teymourinia, M. Salavati-Niasari, O. Amiri, H. Safardoust-Hojaghan, Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. J. Mol. Liq. 242, 447–455 (2017)

    Article  CAS  Google Scholar 

  24. N. Mir, M. Salavati-Niasari, Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater. Res. Bull. 48(4), 1660–1667 (2013)

    Article  CAS  Google Scholar 

  25. X. Jiang, K. Snook, A. Cheng, W. Hackenberger, X. Geng, Micromachined PMN-PT single crystal composite transducers—15–75 MHz PC-MUT. 2008 IEEE Ultrason. Symp. (2008). https://doi.org/10.1109/ULTSYM.2008.0040

    Article  Google Scholar 

  26. J. Yuan, S. Rhee, X.N. Jiang, 60 MHz PMN-PT based 1–3 composite transducer for IVUS imaging. IEEE Ultrason. Symp. (2008). https://doi.org/10.1109/ULTSYM.2008.0164

    Article  Google Scholar 

  27. C. Zhou, J. Zhang, W. Su, Y. Cao, Large thickness-mode electromechanical coupling and good temperature stability of 1–3 PZT/epoxy composites. J. Mater. Sci.-Mater. Electron. 32, 4705–4712 (2021)

    Article  CAS  Google Scholar 

  28. P. Reynolds, J. Hyslop, G. Hayward, Analysis of spurious resonances in single and multi-element piezocomposite ultrasonic transducers. IEEE Symp. Ultrason. (2003). https://doi.org/10.1109/ULTSYM.2003.1293227

    Article  Google Scholar 

  29. J.A. Hossack, G.J. Hayward, Finite-element analysis of 1–3 composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 38(6), 618–629 (1991)

    Article  CAS  PubMed  Google Scholar 

  30. J.A. Brown, E. Cherin, J. Yin, F.S. Foster, Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56(4), 827–836 (2009)

    Article  PubMed  Google Scholar 

  31. J. Yin, M. Lee, E. Cherin, M. Lukacs, F.S. Foster, High frequency piezo-composite transducer with hexagonal pillars. 2009 IEEE Int. Ultrason. Symp. (2009). https://doi.org/10.1109/ULTSYM.2009.5441815

    Article  Google Scholar 

  32. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, X. Geng, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—a review. Prog Mater. Sci. 68, 1–66 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Zhang, F. Li, F. Yu, X. Jiang, H.Y. Lee, J. Luo, T.R. Shrout, Recent developments in piezoelectric crystals. J. Korean Ceram. Soc. 55(5), 419–439 (2018)

    Article  CAS  Google Scholar 

  34. W.A. Smith, B.A. Auld, Modeling 1–3 composite piezoelectrics: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 38(1), 40–47 (1991)

    Article  CAS  PubMed  Google Scholar 

  35. K. Hashimoto, M. Yarnaguchi, Elastic, piezoelectric and dielectric properties of composite materials. 1986 IEEE Ultrason. Symp. (1986). https://doi.org/10.1109/ULTSYM.1986.198824

    Article  Google Scholar 

  36. G. Hayward, J.J. Bennett, Assessing the influence of pillar aspect ratio on the behavior of 1–3 connectivity composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43(1), 98–108 (1996)

    Article  Google Scholar 

  37. D. Certon, O. Casula, F. Patat, D.J. Royer, Theoretical and experimental investigations of lateral modes in 1–3 piezocomposites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44(3), 643–651 (1997)

    Article  Google Scholar 

  38. R. Liu, K.A. Harasiewicz, F.S. Foster, Interdigital pair bonding for high frequency (20–50 MHz) ultrasonic composite transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48(1), 299–306 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. N.R. Sottos, L. Li, W.R. Scott, M.J. Ryan III., Micromechanical behavior of 1–3 piezocomposites. Smart Struct. Mater. 1993: Smart Mater. (1993). https://doi.org/10.1117/12.148507

    Article  Google Scholar 

  40. X. Jian, S. Li, W. Huang, Y. Cui, X. Jiang, Electromechanical response of micromachined 1–3 piezoelectric composites: effect of etched piezo-pillar slope. J. Intell. Mater. Syst. Struct. 26(15), 2011–2019 (2014)

    Article  Google Scholar 

  41. T. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, Y.J. Wang, Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Soncis Ultrason. 32(4), 481–498 (1985)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. U2241242), National Key Research and Development Program of China (Grant No. 2022YFF0709702), the Pilot Technology for Chinese Academy of Sciences (Grant No. XDA2203003), and Foundation of Laboratory of Science and Technology on Marine Navigation and Control (Grant No. 2021010102).

Author information

Authors and Affiliations

Authors

Contributions

Jianan Li contributed toward data curation, formal analysis, investigation, methodology, software, visualization, and writing-original draft. Kai Zou contributed toward software, validation, and resources. Qingwen Yue contributed toward conceptualization, methodology, and supervision. Dongxu Cheng contributed toward formal analysis and validation. Xiangyong Zhao contributed toward software and writing-review & Editing. Zhiyong Zhou contributed toward supervision and writing-review & Editing. Ruihong Liang contributed toward supervision, funding acquisition, and writing-review & Editing.

Corresponding author

Correspondence to Ruihong Liang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 937.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zou, K., Yue, Q. et al. Finite element method simulation, design, and fabrication of micromachined high-frequency piezoelectric composite with hexagonal pillars for intravascular ultrasound imaging. J Mater Sci: Mater Electron 35, 870 (2024). https://doi.org/10.1007/s10854-024-12605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12605-5

Navigation