Skip to main content
Log in

Removal evolution of ciprofloxacin, ofloxacin, and levofloxacin contaminants via synergic influence of cold plasma-driven MWCNTs hybrid process: evaluation of operational parameters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cold plasma-driven (multi-walled carbon nanotubes) MWCNTs as a hybrid process were operated to eliminate antibiotics from contaminated aqueous solutions. XRD, BET-BJH, FTIR, Raman, FESEM, and TEM analyses were performed to determine the catalyst characteristics. The results demonstrated that using the MWCNT as a catalyst enhanced the formation of hydroxyl radicals, ozone molecules, and active oxygen groups on the surface. Also, by applying plasma, the dispersion of catalyst components in the solution medium increases; the oxidation process in the solution occurs more actively and it leads to further decomposition of ozone molecules, hydroxide, and peroxide radicals; the specific surface area increases; and so, the adsorption of pollutant molecules increases, MWCNT provides a suitable position to create more micro-discharges, and as a result, the number of active species increases, and MWCNT increases the lifetime of reactive species. So, the excellent performance of the hybrid process obtained for the degradation of aqua solutions of ciprofloxacin (CIP) (90.6%), ofloxacin (OFL) (83.0%), and levofloxacin (LVO) (72.4%) in concentration of 80 mg/L for 60 min. However, the percentage removal rate decreased with increase in initial antibiotic concentration. In the ciprofloxacin concentrations of 80, 110 and 170 mg/L, the efficiency degradations were 90.6, 65.7, and 54.0%, respectively. By increasing the amount of MWCNT catalyst, the removal performance improves. The percentage removal in the presence of MWCNT at the levels of 0.25, 0.5 and 2.5 g/L was equal to 85.0, 90.6, and 98.7%, respectively. The use of MWCNT activates the oxidation process and increases the specific surface area. As the amount of catalyst increases, more substrate is provided for the generation of reactive oxygen species to stimulate the contaminant removal. Examination of different pHs showed that the effect of this parameter depends on the molecular structure between the particles. The results show that the removal percentage of CIP (ciprofloxacin) is 55.6, 90.6 and 86.5% at pH 2, 6 and 11, respectively. And, the study of gas type in contact with the aqueous shows plasma in percent oxygen has high efficiency (90.6%) rather than air (40.7%) after 60 min. Also, for reusability, the used catalyst (MWCNT) was investigated in four cycles, and finally, the mechanism of reactions that occurred in the solution was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The authors don't have permission to share data.

References

  1. A.B. Sar, E.G. Shabani, M. Haghighi, M. Shabani, J. Taiwan Inst. Chem. Eng. 132, 104131 (2022)

    Article  CAS  Google Scholar 

  2. N. Mikaeeli, M. Haghighi, E. Fatehifar, M. Shabani, Appl. Surf. Sci. 572, 151433 (2022)

    Article  CAS  Google Scholar 

  3. M. Jodeyri, M. Haghighi, M. Shabani, J. Mater. Sci. Mater. Electron. 30, 13877–13894 (2019)

    Article  CAS  Google Scholar 

  4. Z. Zhong, W. Chen, X. Chen, J. Li, H. Yang, L. Zhang, P. Yang, J. Mater. Sci. Mater. Electron. 35, 244 (2024)

    Article  CAS  Google Scholar 

  5. L.S. Alqarni, M.D. Alghamdi, H. Alhussain, N.Y. Elamin, K.K. Taha, A. Modwi, J. Mater. Sci. Mater. Electron. 35, 239 (2024)

    Article  CAS  Google Scholar 

  6. Y. Li, L. Li, R. Zhang, Z. Ying, Y. Zhou, W. Wu, G. Wang, J. Mater. Sci. Mater. Electron. 35, 236 (2024)

    Article  CAS  Google Scholar 

  7. Z. Abdollahizadeh, M. Haghighi, M. Shabani, Sep. Purif. Technol. 278, 119574 (2021)

    Article  Google Scholar 

  8. M. Shabani, M. Haghighi, D. Kahforoushan, S. Heidari, J. Taiwan Inst. Chem. Eng. 96, 243–255 (2019)

    Article  CAS  Google Scholar 

  9. M. Jodeyri, M. Haghighi, M. Shabani, Ultrason. Sonochem. 54, 220–232 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. M. Dang, Y. Guo, Y. Tian, J. Mater. Sci. Mater. Electron. 35, 221 (2024)

    Article  CAS  Google Scholar 

  11. L. Yaqi, C. Ling, D. Yimin, L. Qi, F. Chengqian, W. Zhiheng, C. Ling, L. Bo, Z. Yue-Fei, L. Yan, W. Li, J. Mater. Sci. Mater. Electron. 35, 215 (2024)

    Article  Google Scholar 

  12. H. Kumari, Sonia, S. Chahal, Suman, P. Kumar, A. Kumar, R. Parmar, J. Mater. Sci. Mater. Electron. 35, 212 (2024)

    Article  CAS  Google Scholar 

  13. A. Alam, W.U. Rahman, Z.U. Rahman, S.A. Khan, Z. Shah, K. Shaheen, H. Suo, M.N. Qureshi, S.B. Khan, E.M. Bakhsh, K. Akhtar, J. Mater. Sci. Mater. Electron. 33, 4255–4267 (2022)

    Article  CAS  Google Scholar 

  14. Q. Wei, W. Li, C. Jin, Y. Chen, L. Hou, Z. Wu, Z. Pan, Q. He, Y. Wang, D. Tang, J. Rare Earths 40, 595–604 (2022)

    Article  CAS  Google Scholar 

  15. S. Singh, P. Kaur, V. Kumar, K.B. Tikoo, S. Singhal, J. Rare Earths 39, 781–789 (2021)

    Article  CAS  Google Scholar 

  16. A. James, J.D. Rodney, A. Manojbabu, S. Joshi, L. Rao, B.R. Bhat, N.K. Udayashankar, J. Mater. Sci. Mater. Electron. 35, 190 (2024)

    Article  CAS  Google Scholar 

  17. N. Mohseni, M. Haghighi, M. Shabani, Process. Saf. Environ. Prot. 168, 668–688 (2022)

    Article  CAS  Google Scholar 

  18. A. Sokhansanj, M. Haghighi, M. Shabani, J. Mol. Liq. 371, 121024 (2023)

    Article  CAS  Google Scholar 

  19. S.R. Bavaji, A.J. Ahamed, J. Mater. Sci. Mater. Electron. 35, 147 (2024)

    Article  CAS  Google Scholar 

  20. A. Najafidoust, M. Haghighi, E. Abbasi Asl, H. Bananifard, Sep. Purif. Technol. 221, 101–113 (2019)

    Article  CAS  Google Scholar 

  21. M. Shabani, M. Haghighi, D. Kahforoushan, A. Haghighi, Sol. Energy Mater. Sol. Cells 193, 335–350 (2019)

    Article  CAS  Google Scholar 

  22. H. Tong, T. He, R. He, G. Chen, D. Qian, D. Wu, J. Mater. Sci. Mater. Electron. 35, 144 (2024)

    Article  CAS  Google Scholar 

  23. M. Gavahian, N. Pallares, F. AlKhawli, E. Ferrer, F.J. Barba, Trends Food Sci. Technol. 106, 209–218 (2020)

    Article  CAS  Google Scholar 

  24. H.A. Raza, M. Shafiq, M. Naeem, M.Y. Naz, ChemistrySelect 4, 5348–5354 (2019)

    Article  CAS  Google Scholar 

  25. Y. Gazal, C. Dublanche-Tixier, C. Chazelas, M. Colas, P. Carles, P. Tristant, Thin Solid Films 600, 43–52 (2016)

    Article  CAS  Google Scholar 

  26. S. Samal, J. Clean. Prod. 142, 3131–3150 (2017)

    Article  CAS  Google Scholar 

  27. H. Sobral, R. Sanginés, Spectrochim. Acta Part B 94–95, 1–6 (2014)

    Article  Google Scholar 

  28. J.W. Borchert, U. Zschieschang, F. Letzkus, M. Giorgio, R.T. Weitz, M. Caironi, J.N. Burghartz, S. Ludwigs, H. Klauk, Sci. Adv. 6, eaaz5156 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. T. Shimizu, Y. Ikehara, J. Phys. D Appl. Phys. 50, 503001 (2017)

    Article  Google Scholar 

  30. P. Ranieri, N. Sponsel, J. Kizer, M. Rojas-Pierce, R. Hernández, L. Gatiboni, A. Grunden, K. Stapelmann, Plasma Processes Polym. 18, 2000162 (2021)

    Article  CAS  Google Scholar 

  31. Y. Zhang, Z. Wei, Y. Zhu, S. Tao, M. Chen, Z. Zhang, Z. Jiang, W. Shangguan, J. Rare Earths 41, 789–800 (2023)

    Article  CAS  Google Scholar 

  32. J.O. Tijani, K.O. Badmus, O. Pereao, O. Babajide, C. Zhang, T. Shao, E. Sosnin, V. Tarasenko, O.O. Fatoba, Int. J. Environ. Res. Public Health 18, 1683 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  33. M.Y. Naz, S. Shukrullah, A. Ghaffar, N.U. Rehman, M. Sagir, Synthesis and reactivity in inorganic, metal-organic, and nano-metal. Chemistry 46, 104–109 (2016)

    CAS  Google Scholar 

  34. E.S. Massima Mouele, J.O. Tijani, K.O. Badmus, O. Pereao, O. Babajide, C. Zhang, T. Shao, E. Sosnin, V. Tarasenko, O.O. Fatoba, K. Laatikainen, L.F. Petrik, J. Hazard. Mater. 417, 125481 (2021)

    Article  Google Scholar 

  35. J. Zeng, B. Yang, X. Wang, Z. Li, X. Zhang, L. Lei, Chem. Eng. J. 267, 282–288 (2015)

    Article  CAS  Google Scholar 

  36. M. Rashid, M. Chowdhury, M. Talukder, J. Environ. Chem. Eng. 8, 104504 (2020)

    Article  CAS  Google Scholar 

  37. S. Suarez, E. Ramos-Moore, F. Mücklich, Carbon 51, 404–409 (2013)

    Article  CAS  Google Scholar 

  38. N. Garmendia, A. Arteche, A. García, I. Bustero, I. Obieta, J. Compos. Mater. 43, 247–256 (2009)

    Article  CAS  Google Scholar 

  39. F. Pourfayaz, Y. Mortazavi, A.-A. Khodadadi, S.H. Jafari, S. Boroun, M.V. Naseh, Appl. Surf. Sci. 295, 66–70 (2014)

    Article  CAS  Google Scholar 

  40. Y.G. Denisenko, M.S. Molokeev, A.S. Oreshonkov, A.S. Krylov, A.S. Aleksandrovsky, N.O. Azarapin, O.V. Andreev, I.A. Razumkova, V.V. Atuchin, Crystals 11, 1027 (2021)

    Article  CAS  Google Scholar 

  41. N. Golovnev, M. Molokeev, S. Vereshchagin, V. Atuchin, J. Coord. Chem. 66, 4119–4130 (2013)

    Article  CAS  Google Scholar 

  42. N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, M.Y. Sidorenko, M.S. Dmitrushkov, Polyhedron 70, 71–76 (2014)

    Article  CAS  Google Scholar 

  43. N. Sakakibara, K. Inoue, S. Takahashi, T. Goto, T. Ito, K. Akada, J. Miyawaki, Y. Hakuta, K. Terashima, Y. Harada, Phys. Chem. Chem. Phys. 23, 10468–10474 (2021)

    Article  CAS  PubMed  Google Scholar 

  44. S. Chen, H. Wang, M. Shi, H. Ye, Z. Wu, Environ. Sci. Technol. 52, 8568–8577 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. Z. Jia, M.B. Amar, D. Yang, O. Brinza, A. Kanaev, X. Duten, A. Vega-González, Chem. Eng. J. 347, 913–922 (2018)

    Article  CAS  Google Scholar 

  46. M. Zhu, S. Hu, F. Wu, H. Ma, S. Xie, C. Zhang, J. Phys. D Appl. Phys. 55, 225207 (2022)

    Article  CAS  Google Scholar 

  47. A.A. Aryee, E. Dovi, X. Shi, R. Han, Z. Li, L. Qu, Colloids Surf. A 615, 126260 (2021)

    Article  CAS  Google Scholar 

  48. G. Crini, E. Lichtfouse, Environ. Chem. Lett. 17, 145–155 (2019)

    Article  CAS  Google Scholar 

  49. J. Chakraborty, I. Nath, C. Jabbour, N. Aljammal, S. Song, C.-M. Kao, P.M. Heynderickx, F. Verpoort, J. Hazard. Mater. 398, 122928 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. M.J. Lima, C.G. Silva, A.M. Silva, J.C. Lopes, M.M. Dias, J.L. Faria, Chem. Eng. J. 310, 342–351 (2017)

    Article  CAS  Google Scholar 

  51. A. Huang, D. Zhi, H. Tang, L. Jiang, S. Luo, Y. Zhou, Sci. Total. Environ. 720, 137560 (2020)

    Article  CAS  PubMed  Google Scholar 

  52. E.A. Serna-Galvis, A.M. Botero-Coy, D. Martínez-Pachón, A. Moncayo-Lasso, M. Ibáñez, F. Hernández, R.A. Torres-Palma, Water Res. 154, 349–360 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. A. Ashiq, M. Vithanage, B. Sarkar, M. Kumar, A. Bhatnagar, E. Khan, Y. Xi, Y.S. Ok, Environ. Res. 197, 111091 (2021)

    Article  CAS  PubMed  Google Scholar 

  54. X. Chen, J. Wang, Chem. Eng. J. 395, 125095 (2020)

    Article  CAS  Google Scholar 

  55. J.J.S. Alonso, N. El Kori, N. Melián-Martel, B. Del Río-Gamero, J. Environ. Manag. 217, 337–345 (2018)

    Article  CAS  Google Scholar 

  56. D.A. Palacio, B.F. Urbano, B.L. Rivas, J. Water Process Eng. 46, 102582 (2022)

    Article  Google Scholar 

  57. C. Fang, Q. Huang, Plasma Med. 8, 321–333 (2018)

    Article  Google Scholar 

  58. C.A. Aggelopoulos, Chem. Eng. J. 428, 131657 (2022)

    Article  CAS  Google Scholar 

  59. C. Aggelopoulos, S. Meropoulis, M. Hatzisymeon, Z. Lada, G. Rassias, Chem. Eng. J. 398, 125622 (2020)

    Article  CAS  Google Scholar 

  60. P. Guerra, M. Kim, A. Shah, M. Alaee, S. Smyth, Sci. Total. Environ. 473, 235–243 (2014)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial supports for this study were provided by the Sahand University of Technology and the Iran National Science Foundation.

Funding

Funding was provided by Sahand University of Technology and Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Haghighi or Eslam Ghareh Shabani.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research is in compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badi Sar, A., Haghighi, M., Ghareh Shabani, E. et al. Removal evolution of ciprofloxacin, ofloxacin, and levofloxacin contaminants via synergic influence of cold plasma-driven MWCNTs hybrid process: evaluation of operational parameters. J Mater Sci: Mater Electron 35, 959 (2024). https://doi.org/10.1007/s10854-024-12566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12566-9

Navigation