Skip to main content
Log in

Tailoring the structural, optical, and optoelectrical properties of innovative n-type Ag2ZnSnS4 thin films and investigating ITO/Ag2ZnSnS4/SnS/Au heterojunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aims to create silver zinc tin sulfide (Ag2ZnSnS4) layers with various thicknesses (254, 381, 473, and 539 nm) by a simple chemical deposition technique. The X-ray diffraction data revealed that the as-prepared Ag2ZnSnS4 films are polycrystalline, and all films have a single Ag2ZnSnS4 phase with a tetragonal structure. The morphology of the Ag2ZnSnS4 films was investigated by FE-SEM, which refers to the surface homogeneity of the investigated Ag2ZnSnS4 films. Measurements of transmittance and reflectance of the Ag2ZnSnS4 films studied the optical properties of the chemically prepared Ag2ZnSnS4 films. The analysis of the refractive indices of the investigated films reveals an increase in these values occurred by enlarging the deposition time and film thickness. The energy gap calculations displayed a direct optical transition in thin films of Ag2ZnSnS4 that decreased from 3.53 to 3.06 eV with the growth in the thickness. Furthermore, the optoelectrical indices and nonlinear optical parameters of the Ag2ZnSnS4 films, such as electrical conductivity, optical mobility, and optical conductivity, were enhanced by increasing the thickness. The hot-probe experiment refers to the Ag2ZnSnS4 samples are n-type semiconductors. Ultimately, Ag2ZnSnS4 films are promising n-type semiconductors that might be used in various photovoltaic and optoelectronic applications, particularly the economic window layer for solar cells. Conversely, ITO/Ag2ZnSnS4/SnS/Au heterojunction was created. The solar conversion efficiency of this heterojunction device is 7.27%. The outcomes demonstrated that these Ag2ZnSnS4 samples can be used to thin-film solar cells as a novel window layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. A.A. Kebede, T. Kalogiannis, J. Van Mierlo, M. Berecibar, Renew. Sustain. Energy Rev. 159, 112213 (2022)

    CAS  Google Scholar 

  2. T.-Z. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari, N. Prabaharan, Energy Strategy Rev. 43, 100939 (2022)

    Google Scholar 

  3. Z.M. Ghazi, S.W.F. Rizvi, W.M. Shahid, A.M. Abdulhameed, H. Saleem, S.J. Zaidi, Desalination 542, 116063 (2022)

    CAS  Google Scholar 

  4. P.A. Owusu, S. Asumadu-Sarkodie, Cogent Eng. 3, 1167990 (2016)

    Google Scholar 

  5. S.K. Sahoo, Renew. Sustain. Energy Rev. 59, 927 (2016)

    Google Scholar 

  6. C. Battaglia, A. Cuevas, S. De Wolf, Energy Environ. Sci. 9, 1552 (2016)

    CAS  Google Scholar 

  7. C. Wadia, A.P. Alivisatos, D.M. Kammen, Environ. Sci. Technol. 43, 2072 (2009)

    CAS  PubMed  Google Scholar 

  8. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011)

    CAS  Google Scholar 

  9. T. Gokmen, O. Gunawan, T.K. Todorov, D.B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013)

    Google Scholar 

  10. N. Bitri, S. Dridi, F. Chaabouni, M. Abaab, Mater. Lett. 213, 31 (2018)

    CAS  Google Scholar 

  11. J. Henry, K. Mohanraj, G. Sivakumar, Part. Sci. Technol. 38, 1 (2020)

    CAS  Google Scholar 

  12. M.A.A.M. Abdah, M.R. Rejab, M. Mokhtar, K. Sopian, A. Ahmad, H. Ahmoum, P. Scardi, M.S. Su’ait, Ceram. Int. 47, 20717 (2021)

    CAS  Google Scholar 

  13. H. Ahmoum, G. Li, M.S. Su’ait, M. Boughrara, P. Chelvanathan, Y. Khaaissa, M. Kerouad, Q. Wang, Superlattices Microstruct. 160, 107091 (2021)

    CAS  Google Scholar 

  14. I.M. El Radaf, Optik (Stuttg.) 272, 170358 (2022)

    Google Scholar 

  15. S.K. Wallace, D.B. Mitzi, A. Walsh, ACS Energy Lett. 2, 776 (2017)

    CAS  Google Scholar 

  16. T. Altalhi, A.A. Gobouri, M.S. Refat, M.M. El-Nahass, A.M. Hassanien, A.A. Atta, H.A. Saad, A.N. Alhazaa, Appl. Phys. A 126, 1 (2020)

    Google Scholar 

  17. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)

    Google Scholar 

  18. Y. Gong, Q. Zhu, B. Li, S. Wang, B. Duan, L. Lou, C. Xiang, E. Jedlicka, R. Giridharagopal, Y. Zhou, Nat. Energy 7, 966 (2022)

    CAS  Google Scholar 

  19. T. Kato, J.-L. Wu, Y. Hirai, H. Sugimoto, V. Bermudez, IEEE J. Photovolt. 9, 325 (2018)

    Google Scholar 

  20. T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Sol. Energy 85, 1580 (2011)

    CAS  Google Scholar 

  21. H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol. Energy Mater. Sol. Cells 65, 141 (2001)

    CAS  Google Scholar 

  22. A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Opt. Quantum Electron. 52, 1 (2020)

    Google Scholar 

  23. I.M. El Radaf, A.M. Mansour, G.B. Sakr, J. Semicond. 39, 124010 (2018)

    Google Scholar 

  24. T.A. Hameed, I.M. El Radaf, H.E. Elsayed-Ali, J. Mater. Sci. Mater. Electron. 29, 12584 (2018)

    CAS  Google Scholar 

  25. Y. Jayasree, Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, Physica B 618, 413199 (2021)

    CAS  Google Scholar 

  26. I.M. El Radaf, J. Mater. Sci. Mater. Electron. 31, 3228 (2020)

    Google Scholar 

  27. A.S. Hassanien, I.M. El Radaf, Physica B 585, 412110 (2020)

    CAS  Google Scholar 

  28. I.M. El Radaf, J. Electron. Mater. 49, 3591 (2020)

    Google Scholar 

  29. H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, J. Ding, Sol. Energy Mater. Sol. Cells 178, 146 (2018)

    CAS  Google Scholar 

  30. H.H. Radamson, A. Hallén, I. Sychugov, A. Azarov, Analytical Methods and Instruments for Micro- and Nanomaterials (Springer, Berlin, 2023)

    Google Scholar 

  31. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Optik (Stuttg.) 227, 165837 (2021)

    CAS  Google Scholar 

  32. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Superlattices Microstruct. 143, 106544 (2020)

    CAS  Google Scholar 

  33. A.A. Akl, A.S. Hassanien, Physica B 620, 413267 (2021)

    CAS  Google Scholar 

  34. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, Berlin, 2017)

    Google Scholar 

  35. T.A. Hameed, I.M. El Radaf, G.B. Sakr, Appl. Phys. A 124, 684 (2018)

    Google Scholar 

  36. I.M. El Radaf, Appl. Phys. A 126(5), 357 (2020)

    Google Scholar 

  37. A.F. Kraidy, I.M. El Radaf, A. Zeinert, A. Lahmar, A. Pelaiz-Barranco, Y. Gagou, J. Phys. D 20, 205102 (2024)

    Google Scholar 

  38. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    CAS  Google Scholar 

  39. M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, H.Y. Zahran, J. Mater. Sci. Mater. Electron. 29, 6446 (2018)

    CAS  Google Scholar 

  40. T.A. Hameed, I.M.E. Radaf, G.B. Sakr, Appl. Phys. A 124, 1–9 (2018)

    CAS  Google Scholar 

  41. A.S. Hassanien, I. Sharma, J. Alloys Compd. 798, 750 (2019)

    CAS  Google Scholar 

  42. I.M. El Radaf, Appl. Phys. A 125, 1 (2019)

    Google Scholar 

  43. A.S. Hassanien, K.A. Aly, A.A. Akl, J. Alloys Compd. 685, 733 (2016)

    CAS  Google Scholar 

  44. I. Sharma, P. Sharma, A.S. Hassanien, J. Non-Cryst. Solids 590, 121673 (2022)

    CAS  Google Scholar 

  45. I.M. El Radaf, H.Y.S. Al-Zahrani, ECS J. Solid State Sci. Technol. 13, 35002 (2024)

    Google Scholar 

  46. I. Sharma, A.S. Hassanien, J. Non-Cryst. Solids 548, 120326 (2020)

    CAS  Google Scholar 

  47. I.M. El Radaf, A.S. Hassanien, Phys. B Condens. Matter 659, 414867 (2023)

    Google Scholar 

  48. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    CAS  Google Scholar 

  49. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Google Scholar 

  50. K.A. Aly, Appl. Phys. A 99, 913 (2010)

    CAS  Google Scholar 

  51. P. Sharma, S.C. Katyal, Mater. Chem. Phys. 112, 892 (2008)

    CAS  Google Scholar 

  52. M. Mohamed, E.R. Shaaban, M.N. Abd-el Salam, A.Y. Abdel-Latief, S.A. Mahmoud, M.A. Abdel-Rahim, Optik (Stuttg.) 178, 1302 (2019)

    CAS  Google Scholar 

  53. K.V. Chandekar, F.H. Alkallas, A.B.G. Trabelsi, M. Shkir, J. Hakami, A. Khan, H.E. Ali, N.S. Awwad, S. AlFaify, Physica B 641, 414099 (2022)

    CAS  Google Scholar 

  54. Z.R. Khan, A.S. Alshammari, M. Mohamed, M. Shkir, Physica B 645, 414270 (2022)

    CAS  Google Scholar 

  55. I.M. El Radaf, H.Y.S. Al-Zahrani, J. Mater. Sci. Mater. Electron. 34, 696 (2023)

    Google Scholar 

  56. H.Y.S. Al-Zahrani, I.M. El Radaf, Opt. Quantum Electron. 55, 1169 (2023)

    CAS  Google Scholar 

  57. A. Alsulami, A. Alsalme, ECS J. Solid State Sci. Technol. 12, 123006 (2023)

    Google Scholar 

  58. I.M. El Radaf, Appl. Phys. A 126, 1 (2020)

    Google Scholar 

  59. A.S. Hassanien, I. Sharma, Optik (Stuttg.) 200, 163415 (2020)

    CAS  Google Scholar 

  60. I.M. El Radaf, R.M. Abdelhameed, J. Alloys Compd. 765, 1174 (2018)

    Google Scholar 

  61. I.M. El Radaf, Physica B 650, 414539 (2023)

    Google Scholar 

  62. A. Alsulami, A. Alsalme, J. Mater. Sci. Mater. Electron. 35, 28 (2024)

    CAS  Google Scholar 

  63. A.S. Hassanien, J. Non-Cryst. Solids 586, 121563 (2022)

    CAS  Google Scholar 

  64. A.J. Jebathew, M. Karunakaran, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, I.S. Yahia, H.Y. Zahran, A. Kathalingam, Physica B 574, 411674 (2019)

    CAS  Google Scholar 

  65. A.S. Hassanien, I.M. El Radaf, Mater. Sci. Semicond. Process. 160, 107405 (2023)

    CAS  Google Scholar 

  66. A.S. Hassanien, I. Sharma, K.A. Aly, Physica B 613, 412985 (2021)

    CAS  Google Scholar 

  67. A.S. Hassanien, I.M. El Radaf, Mater. Chem. Phys. 303, 127827 (2023)

    CAS  Google Scholar 

  68. I.M. El Radaf, J. Mater. Sci. Mater. Electron. 34, 215 (2023)

    Google Scholar 

  69. G. Golan, A. Axelevitch, B. Gorenstein, V. Manevych, Microelectron. J. 37, 910 (2006)

    CAS  Google Scholar 

  70. A.M. Mansour, I.S. Yahia, I.M. El Radaf, Mater. Res. Express 5, 76406 (2018)

    Google Scholar 

  71. I.M. El Radaf, Appl. Phys. A 125, 832 (2019)

    Google Scholar 

  72. M. Nasr, I.M. El Radaf, A.M. Mansour, J. Phys. Chem. Solids 115, 283–288 (2018)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reim A. Almotiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The manuscript should not be submitted to multiple journals for simultaneous consideration. The authors agree to publish the manuscript in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almotiri, R.A. Tailoring the structural, optical, and optoelectrical properties of innovative n-type Ag2ZnSnS4 thin films and investigating ITO/Ag2ZnSnS4/SnS/Au heterojunction. J Mater Sci: Mater Electron 35, 794 (2024). https://doi.org/10.1007/s10854-024-12563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12563-y

Navigation