Skip to main content
Log in

Thermoelectric properties of doped topological half-Heusler LuPdBi1-xZx (Z = P, As, Sb) compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Utilizing first-principles calculations and the Boltzmann transport equation under the constant relaxation time approximation, the electronic and thermoelectric properties of doped half-Heusler (HH) LuPdBi0.75Z0.25 (Z = P, As, Sb) compounds have been explored. The mechanical stability of the resulting compounds is confirmed via computed values of various elastic constants. Our findings demonstrate that the substitution of Bi-atom with P, As, or Sb atoms significantly enhances the Seebeck coefficient. This enhancement leads to an increase in the power factor value up to ~ 4.69 × 1011 W/m.K2.sec for the LuPdBi0.75Sb0.25 compound at 700 K. Additionally, Sb doping leads to a decrease in the lattice thermal conductivity, from 4.44 to 1.07 W/m.K for LuPdBi and LuPdBi0.75Sb0.25 compounds, respectively. At 700 K, the computed figure of merit (ZT) values for pure and Sb-doped LuPdBi compounds are 0.25 and 0.41, respectively. Our investigation suggests that the LuPdBi compound has the potential as an effective thermoelectric material with suitable Sb doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and materials that substantiate the results of this study are accessible upon contacting the corresponding author and submitting a reasonable request.

References

  1. L.E. Bell, Science 321(5895), 1457–1461 (2008)

    CAS  PubMed  Google Scholar 

  2. G. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116(19), 12123–12149 (2016)

    CAS  PubMed  Google Scholar 

  3. G.J. Snyder, E.S. Toberer, Nat. Publ. Group 7(2), 105–114 (2008)

    CAS  Google Scholar 

  4. K. Xia, C. Hu, C. Fu, X. Zhao, T. Zhu, Appl. Phys. Lett. 118(14), 140503 (2021)

    CAS  Google Scholar 

  5. X. Ye, Z. Feng, Y. Zhang, G. Zhao, D.J. Singh, Phys. Rev. B 105(10), 104309 (2022)

    CAS  Google Scholar 

  6. C. Liu, Y. Lee, T. Kondo, E.D. Mun, M. Caudle, B.N. Harmon, S.L. Bud’ko, P.C. Canfield, A. Kaminski, Phys. Rev. B 83(20), 205133 (2011)

    Google Scholar 

  7. Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S.R. Saha, J. Paglione, Sci. Adv. 1(5), e1500242 (2015)

    PubMed  PubMed Central  Google Scholar 

  8. O. Pavlosiuk, D. Kaczorowski, P. Wiśniewski, Sci. Rep. 5(1), 1–9 (2015)

    Google Scholar 

  9. O. Pavlosiuk, D. Kaczorowski, P. Wiśniewski, Phys. Rev. B 94(3), 035130 (2016)

    Google Scholar 

  10. C.Y. Guo, F. Wu, Z.Z. Wu, M. Smidman, C. Cao, A. Bostwick, C. Jozwiak, E. Rotenberg, Y. Liu, F. Steglich, H.Q. Yuan, Nat. Commun. 9(1), 1–7 (2018)

    Google Scholar 

  11. W. Al-Sawai, H. Lin, R.S. Markiewicz, L.A. Wray, Y. Xia, S.Y. Xu, M.Z. Hasan, A. Bansil, Phys. Rev. B 82(12), 125208 (2010)

    Google Scholar 

  12. M. Zhang, J. Wei, G. Wang, Phys. Lett. A 382(9), 673–678 (2018)

    CAS  Google Scholar 

  13. D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.Q. Chen, G.M. Stocks, Z. Zhang, Phys. Rev. Lett. 105(9), 096404 (2010)

    PubMed  Google Scholar 

  14. H.S. Saini, S. Srivastava, M.K. Kashyap, Physica Scripta 96(12), 125702 (2021)

    Google Scholar 

  15. A. Yadav, S. Kumar, M. Muruganathan, R. Kumar, J. Phys.: Condens. Matter 33(34), 345701 (2021)

    CAS  Google Scholar 

  16. S. Roychowdhury, U. Sandhya Shenoy, U.V. Waghmare, K. Biswas, Appl. Phys. Lett. 108(19), 193901 (2016)

    Google Scholar 

  17. G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, X.X. Zhang, Sci. Rep. 4(1), 5709 (2014)

    PubMed  PubMed Central  Google Scholar 

  18. Z.K. Liu, L.X. Yang, S.C. Wu, C. Shekhar, J. Jiang, H.F. Yang, Y. Zhang, S.K. Mo, Z. Hussain, B. Yan, C. Felser, Y.L. Chen, Nat. Commun. 7(1), 12924 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Gupta, M.M. Sinha, S.S. Verma, Physica Status Solidi (b) 256(10), 1900117 (2019)

    CAS  Google Scholar 

  20. A. Bhattacharya, V. Bhardwaj, B.K. Mani, J.K. Dutt, R. Chatterjee, Sci. Rep. 11(1), 1–8 (2021)

    CAS  Google Scholar 

  21. K. Kaur, S. Dhiman, R. Kumar, Phys. Lett. A 381(4), 339–343 (2017)

    CAS  Google Scholar 

  22. K. Kawano, K. Kurosaki, T. Sekimoto, H. Muta, S. Yamanaka, Appl. Phys. Lett. 91(6), 062115 (2007)

    Google Scholar 

  23. K. Ciesielski, K. Synoradzki, I. Wolańska, P. Stuglik, D. Kaczorowski, Mater. Today: Proc. 8, 562–566 (2019)

    CAS  Google Scholar 

  24. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K. Madsen, L.D. Marks, J. Chem. Phys. 152(7), 074101 (2020)

    CAS  PubMed  Google Scholar 

  25. H. Singh, M. Singh, S. Kumar, M.K. Kashyap, Physica B 406(20), 3825–3830 (2011)

    CAS  Google Scholar 

  26. Jamal, M. (2014). IRelast and 2DR-optimize packages are provided by M. Jamal as part of the commercial code WIEN2K.

  27. G.K. Madsen, D.J. Singh, Comput. Phys. Commun. 175(1), 67–71 (2006)

    CAS  Google Scholar 

  28. S. Al-Qaisi, M.S. Abu-Jafar, G.K. Gopir, R. Ahmed, S.B. Omran, R. Jaradat, D. Dahliah, R. Khenata, Results Phys. 7, 709–714 (2017)

    Google Scholar 

  29. F. Mouhat, F.X. Coudert, Phys. Rev. B 90(22), 224104 (2014)

    Google Scholar 

  30. J.J. Gilman, Electronic basis of the strength of materials (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  31. D. Chattaraj, C. Majumder, S. Dash, J. Alloy. Compd. 615, 234–242 (2014)

    CAS  Google Scholar 

  32. A. Yildirim, H. Koc, E. Deligoz, Chin. Phys. B 21(3), 037101 (2012)

    Google Scholar 

  33. X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19(9), 1275–1281 (2011)

    CAS  Google Scholar 

  34. Y. Fu, D.J. Singh, W. Li, L. Zhang, Phys. Rev. B 94(7), 075122 (2016)

    Google Scholar 

  35. P. Wachter, M. Filzmoser, J. Rebizant, Physica B 293(3–4), 199–223 (2001)

    CAS  Google Scholar 

  36. Z. Sun, S. Li, R. Ahuja, J.M. Schneider, Solid State Commun. 129(9), 589–592 (2004)

    CAS  Google Scholar 

  37. E. Schreiber, O.L. Anderson, N. Soga, Elastic constant and their measurements (McGraw-Hill, New York, 1973)

    Google Scholar 

  38. Parvin, F., Hossain, M. A., Ahmed, M. I., Akter, K., & Islam, A. K. M. A. (2020). arXiv preprint arXiv:2011.10506.

  39. F. Serrano-Sánchez, T. Luo, J. Yu, W. Xie, C. Le, G. Auffermann, A. Weidenkaff, T. Zhu, X. Zhao, J.A. Alonso, B. Gault, C. Felser, C. Fu, J. Mater. Chem. A 8(29), 14822–14828 (2020)

    Google Scholar 

  40. D. Zhao, M. Zuo, L. Bo, Y. Wang, Materials 11(5), 728 (2018)

    PubMed  PubMed Central  Google Scholar 

  41. D.T. Morelli, G.A. Slack, High thermal conductivity materials (Springer, New York, 2006), pp.37–68

    Google Scholar 

  42. E.J. Skoug, J.D. Cain, D.T. Morelli, Appl. Phys. Lett. 96(18), 181905 (2010)

    Google Scholar 

  43. S. Ning, S. Huang, Z. Zhang, R. Zhang, R. Qi, Z. Chen, Phys. Chem. Chem. Phys. 22(26), 14621–14629 (2020)

    CAS  PubMed  Google Scholar 

  44. S. Huang, X. Liu, W. Zheng, J. Guo, R. Xiong, Z. Wang, J. Shi, J. Mater. Chem. A 6(41), 20069–20075 (2018)

    CAS  Google Scholar 

  45. T. Sekimoto, K. Kurosaki, H. Muta, S. Yamanaka, J. Appl. Phys. 99, 103701 (2006)

    Google Scholar 

  46. F. Hosseinzadeh, A. Boochani, S.M. Elahi, Z. Ghorannevis, Int. Nano Lett. 10, 225–234 (2020)

    CAS  Google Scholar 

  47. T. Sekimoto, K. Kurosaki, H. Muta, S. Yamanaka, Mater. Trans. 48(8), 2079–2082 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

A gratitude is extended by Hardev. S. Saini, one of the authors, toward the Department of Physics, GJUS&T, Hisar for granting access to computational resources.

Funding

There is no funding source available for this publication.

Author information

Authors and Affiliations

Authors

Contributions

Narender Kumar: Writing-original draft. Nisha Sheoran: Helping in conceptualization, visualization and writing. Dr. Hardev S. Saini: Supervision and editing. Dr. Manish K. Kashyap: Reviewing and editing the draft.

Corresponding author

Correspondence to Hardev S. Saini.

Ethics declarations

Conflict of interest

There are no identifiable conflicting financial interests or personal associations that could have been perceived as influencing the outcomes presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Saini, H.S., Sheoran, N. et al. Thermoelectric properties of doped topological half-Heusler LuPdBi1-xZx (Z = P, As, Sb) compounds. J Mater Sci: Mater Electron 35, 793 (2024). https://doi.org/10.1007/s10854-024-12546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12546-z

Navigation