Skip to main content
Log in

Effects of different light and heavy rare-earth compositions on structure and magnetic properties of high-entropy garnet ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, a series of high-entropy (Sm0.2Eu0.2Yb0.2Y0.2RE0.2)3Fe5O12 (RE = La, Nd, Gd, Dy, Er, Tm, Lu) garnet ceramics were synthesized by the solid-phase method. Among them, samples (Sm0.2Eu0.2Yb0.2Y0.2RE0.2)3Fe5O12 (RE = Nd, Gd, Dy, Er, Tm, Lu) forms single-phase garnet structure, and only sample (Sm0.2Eu0.2Yb0.2Y0.2La0.2)3Fe5O12 did not form single-phase but some second phases appear. Meanwhile, EDS results show that the approximate equimolar ratio of lanthanides were determined. The effects of different rare-earth composition on the structure and magnetic properties of the high-entropy rare-earth garnet ceramics were systematically investigated. Moreover, the combination of different light and heavy rare-earth makes the magnetism of the high-entropy garnet ceramics interesting, which proves the possibility of controlling the magnetism of high-entropy garnet ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. J.W. Yeh, S.K. Chen, J.W. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. 8, 2533–2536 (2004). https://doi.org/10.1080/09506608.2016.1180020

    Article  CAS  Google Scholar 

  2. B. Cantor, Multicomponent and high entropy alloys. Entropy 16, 4749–4768 (2014). https://doi.org/10.3390/e16094749

    Article  CAS  Google Scholar 

  3. C.L. Chen, Y.J. Yang, D.Y. Chen, Y.M. Zhang, Y.T. Meng, Micro-structural and magnetic analysis of spinel high entropy oxides synthesized by two-step pressureless sintering provides insight into high entropy ceramics. Mater. Today. Commun. 35, 106122 (2023). https://doi.org/10.1016/j.mtcomm.2023.106122

    Article  CAS  Google Scholar 

  4. H. Chen, H.M. Xiang, F.-Z. Dai, J.C. Liu, Y.C. Zhou, High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion. J. Mater. Sci. Technol. 36, 134–139 (2020). https://doi.org/10.1016/j.jmst.2019.07.022

    Article  Google Scholar 

  5. Z.F. Zhao, H.M. Xiang, F.-Z. Dai, Z.J. Peng, Y.C. Zhou, (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J. Mater. Sci. Technol. 35, 2647–2651 (2019). https://doi.org/10.1016/j.jmst.2019.05.054

    Article  CAS  Google Scholar 

  6. Z.F. Zhao, H.M. Xiang, F.Z. Dai, Z.J. Peng, Y.C. Zhou, (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: a high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. J. Mater. Sci. Technol. 35, 2892–2896 (2019). https://doi.org/10.1016/j.jmst.2019.08.012

    Article  CAS  Google Scholar 

  7. R. Witte, A. Sarkar, L. Velasco, R. Kruk, R.A. Brand, B. Eggert, K. Ollefs, E. Weschke, H. Wende, H. Hahn, Magnetic properties of rare-earth and transition metal based perovskite type high entropy oxides. J. Appl. Phys. 127, 185109 (2020). https://doi.org/10.1063/5.0004125

    Article  CAS  Google Scholar 

  8. H.W. Liu, A. Bao, J. Zhang, Y.H. Gu, X.Y. Zhang, X.W. Qi, Dielectric properties of (Y0.2Eu0.2Er0.2Dy0.2Lu0.2)3(AlxFe1-x)5O12 high-entropy garnet ceramics. Ceram. Int. 5, 7208–7213 (2023). https://doi.org/10.1016/j.ceramint.2022.04.318

    Article  CAS  Google Scholar 

  9. D. Berardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL 4, 328–333 (2016). https://doi.org/10.1002/pssr.201600043

    Article  CAS  Google Scholar 

  10. A.Q. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Koji, H. Zhang, Y.G. Jia, A new class of spinel high-entropy oxides with controllable magnetic properties. J. Magn. Magn. Mater. 497, 165884 (2020). https://doi.org/10.1016/j.jmmm.2019.165884

    Article  CAS  Google Scholar 

  11. A. Sarkar, C. Loho, L. Velasco et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton Trans. 46, 12167–12176 (2017). https://doi.org/10.1039/C7DT02077E

    Article  CAS  PubMed  Google Scholar 

  12. H. Chen, J. Fu, P. Zhang, H. Peng, C.W. Abney, K. Jie, X. Liu, M. Chi, S. Dai, Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with hightemperature stability. J. Mater. Chem. A. 6, 11129–11133 (2018). https://doi.org/10.1039/C8TA01772G

    Article  CAS  Google Scholar 

  13. M. Pianassola, M. Loveday, B.C. Chakoumakos, M. Koschan, C.L. Melcher, M. Zhuravleva, Crystal growth and elemental homogeneity of the multicomponent rare-earth garnet (Lu1/6Y1/6Ho1/6Dy1/6Tb1/6Gd1/6)3Al5O12. Cryst. Growth Des. 20, 6769–6776 (2020). https://doi.org/10.1021/acs.cgd.0c00887

    Article  CAS  Google Scholar 

  14. J. Dąbrowa, J. Cieślak, M. Zajusz, M. Moździerz, K. Berent, A. Mikuła, A. Stępień, K. Świerczek, Structure and transport properties of the novel (Dy, Er, Gd, Ho, Y)3Fe5O12 and (Dy, Gd, Ho, Sm, Y)3Fe5O12 high entropy garnets. J. Eur. Ceram. Soc. 41, 3844–3849 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.12.052

    Article  CAS  Google Scholar 

  15. O. Opuchovic, D. Niznansky, A. Kareiva, Thermoanalytical (TG/DSC/EVG-GC-MS) characterization of the lanthanide (Ho) iron garnet formation in sol-gel. J. Therm. Anal. Calorim. 130, 1085–1094 (2017). https://doi.org/10.1007/s10973-017-6492-0

    Article  CAS  Google Scholar 

  16. V. Sharma, B.K. Kumar, Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. J. Alloys Compd. 748, 591–600 (2018). https://doi.org/10.1016/j.jallcom.2018.03.086

    Article  CAS  Google Scholar 

  17. Y.C. Yang, T. Liu, L. Bi, L.J. Deng, Recent advances in development of magnetic garnet thin films for applications in spintronics and photonics. J. Alloys Compd. 860, 158235 (2021). https://doi.org/10.1016/j.jallcom.2020.158235

    Article  CAS  Google Scholar 

  18. A.B. Bhosale, S.B. Somvanshi, V.D. Murumkar, K.M. Jadhav, Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: magnetic, electrical and dielectric behavior. Ceram. Int. 46, 15372–15378 (2020). https://doi.org/10.1016/j.ceramint.2020.03.081

    Article  CAS  Google Scholar 

  19. R.R. Katzbaer, F.M.D.S. Vieira, I. Dabo, Z. Mao, R.E. Schaak, Band gap narrowing in a high-entropy spinel oxide semiconductor for enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 145, 6753–6761 (2023). https://doi.org/10.1021/jacs.2c12887

    Article  CAS  PubMed  Google Scholar 

  20. Y. Zhang, T. Zuo, Z. Tang, M. Gao, K. Dahmen, P. Liaw, Z. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  21. G.A. Rosales-Sosa, A. Masuno, Y.J. Higo, Y. Watanabe, H. Inoue, Effect of rare-earth ion size on elasticity and crack initiation in rare-earth aluminate glasses. J. Am. Chem. Soc. 101, 5030–5036 (2018). https://doi.org/10.1111/jace.15760

    Article  CAS  Google Scholar 

  22. M. Gonçalves, J. Matilla-Arias, F.P. Araujo, Y. Guerra, B.C. Viana, E.C. Silva-Filho, J.A. Osajima, L.C. Almeida, A. Franco Jr., R. Pena-Garcia, Investigation of structural, optical and magnetic properties of Y3-xCexFe5-yEryO12 compound. Physica B 644, 414231 (2022). https://doi.org/10.1016/j.physb.2022.414231

    Article  CAS  Google Scholar 

  23. R. Metselaar, M.A.H. Huyberts, The stoichiometry and defect structure of yttrium iron garnet and the nature of the centres active in the photomagnetic effect. J. Phys. Chem. Solids 34, 2257–2263 (1973). https://doi.org/10.1016/S0022-3697(73)80074-5

    Article  CAS  Google Scholar 

  24. M.A. Musa, R.A.S. Azis, N.H. Osman, J. Hassan, T. Zangina, Structural and magnetic properties of yttrium-iron garnet (YIG) and yttrium aluminium iron garnet (YAIG) nanoferrite via sol-gel synthesis. Result. Phys. 7, 1135–1142 (2017). https://doi.org/10.1016/j.rinp.2017.02.038

    Article  Google Scholar 

  25. A.R. Bhalekar, L.N. Singh, Structural and magnetic studies of Al-doped Y2.8La0.2Fe5O12 nanoferrites prepared by a sol-gel route. J. Supercond. Nov. Magn. 33, 1859–1870 (2020). https://doi.org/10.1007/s10948-020-05422-4

    Article  CAS  Google Scholar 

  26. G.F. Dionne, Molecular field coefficients of substituted yttrium iron garnets. J. Appl. Phys. 41, 4874–4881 (1970). https://doi.org/10.1063/1.1658555

    Article  CAS  Google Scholar 

  27. D.Y. Chen, Y.J. Yang, C.L. Chen, Y.T. Meng, Y.M. Zhang, C. Zhang, Structure and magnetism of novel high-entropy rare-earth iron garnet ceramics. Ceram. Int. 49, 9862–9867 (2023). https://doi.org/10.1016/j.ceramint.2022.11.161

    Article  CAS  Google Scholar 

  28. X. Oudet, The magnetic moment of Ln3Fe5O12 garnets. J. Magn. Magn. Mater. 272–276, 562–564 (2004). https://doi.org/10.1016/j.jmmm.2003.11.209

    Article  CAS  Google Scholar 

  29. T. Ohnishi, T. Taniguchi, A. Ikoshi, S. Mizusaki, Y. Nagata, S.H. Lai, M.D. Lan, Y. Noro, T.C. Ozawa, K. Kindo, A. Matsuo, S. Takayanagi, Antiferromagnetism of LnRhO3 (Ln = rare earth). J. Alloys Compd. 506, 27–32 (2010). https://doi.org/10.1016/j.jallcom.2010.07.004

    Article  CAS  Google Scholar 

  30. S.M. Aliev, I.K. Kamilov, MSh. Aliev, Zh.G. Ibaev, Remanent magnetizations of gadolinium iron garnet sublattices near the compensation point. Phys. Solid State 56, 1114–1117 (2014)

    Article  CAS  Google Scholar 

  31. O. Opuchovic, A. Kareiva, Mazeika, Dalis Baltrunas, Magnetic nanosized rare earth iron garnets R3Fe5O12: sol–gel fabrication, characterization and reinspection. J. Magn. Magn. Mater. 422, 425–433 (2017). https://doi.org/10.1016/j.jmmm.2016.09.041

    Article  CAS  Google Scholar 

  32. E. Garskaite, K. Gibson, A. Leleckaite, J. Glaser, D. Niznansky, A. Kareiva, H. Mayer, On the synthesis and characterization of iron-containing garnets (Y3Fe5O12, YIG and Fe3Al5O12, IAG). Chem. Phys. 323, 204–210 (2006). https://doi.org/10.1016/j.chemphys.2005.08.055

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology, investigation, writing—original draft by Dongyang Chen. Resources, writing—review and editing, supervision by Yujie Yang.Validation, Visualization by Yingming Zhang, Congliang Chen, Hao Li, Yuting Meng, Zhengyu Zhang. The first draft of the manuscript was written by Dongyang Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yujie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Yang, Y., Zhang, Y. et al. Effects of different light and heavy rare-earth compositions on structure and magnetic properties of high-entropy garnet ceramics. J Mater Sci: Mater Electron 35, 799 (2024). https://doi.org/10.1007/s10854-024-12536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12536-1

Navigation