Skip to main content
Log in

Enhanced photoresponse in Ag/CdTe/p-Si/Al heterostructure photodetectors, the influence of CdTe layer thickness

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the influence of the sputtered CdTe interface layer thicknesses (0, 80, and 120 nm) in Ag/CdTe/p-Si/Al photodiodes (PDs) on the photoresponse of the samples to the halogen lamp illumination was investigated. The layers were characterized by FESEM, EDX, XRD, Raman, PL, Seebeck, UV–Vis. spectra, also I–V and I–t in the dark and under light illumination. We found: (1) while the thin CdTe interface layer is amorphous, the thick one has a polycrystalline cubic phase structure; (2) The insertion of the interface layer has led to an increase (about one order of magnitude) in the series resistance of the samples, leading to a decrease in the dark current (ID) of their own devices; (3) The sample with the thickest CdTe layer has the highest active region volume and the highest light absorbance, leading to the highest photocurrent (IP) and therefore the highest light sensitivity S (= IP/ID) of ~300, which is the highest value reported in CdTe/p-Si heterostructure PDs; (4) all the fabricated samples have fast response times (less than 200 ms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. A.R. Deniz, The analyzing of I–V performance of PbO2/n-Si heterojunction in the wide temperature range. J. Alloys Compd. 888, 161523 (2021)

    Article  CAS  Google Scholar 

  2. H.G. Çetinkaya, O. Çiçek, S. Altındal, Y. Badali, S. Demirezen, Vertical CdTe:PVP/p-Si-based temperature sensor by using aluminum anode schottky contact. IEEE Sens. J. 22, 22391–22397 (2022)

    Article  Google Scholar 

  3. F.A. Akgul, G. Akgul, H.H. Gullu, H.E. Unalan, R. Turan, Enhanced diode performance in cadmium telluride–silicon nanowire heterostructures. J. Alloys Compd. 644, 131–139 (2015)

    Article  CAS  Google Scholar 

  4. A.S. Dahlan, A. Tataroğlu, A.A. Al-Ghamdi, S. Bin-Omran, F.Y. Al-Turki, Photodiode and photocapacitor properties of Au/CdTe/p-Si/Al device. J. Alloys Compd. 646, 1151–1156 (2015)

    Article  CAS  Google Scholar 

  5. S. Deivanayaki, P. Jayamurugan, R. Mariappan, V. Ponnuswamy, Optical and structural charactrization of CdTe thin films by chemical bath deposition technique. Chalcogenide Lett. 7, 159–163 (2010)

    CAS  Google Scholar 

  6. S. Surabhi, K. Anurag, Sh. Rajpal, S.R. Kumar, A new route for preparing CdTe thin films by chemical bath deposition. Mater. Today 44, 1463–1467 (2021)

    CAS  Google Scholar 

  7. L. Gouda, Y.R. Aniruddha, Sh.K. Ramasesha, Correlation between the solution chemistry to observed properties of CdTe thin films prepared by CBD method. J. Mod. Phys. 3, 1870–1877 (2012)

    Article  Google Scholar 

  8. S.D. Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke, M.G. Takwale, K.C. Mohite, Spray pyrolysis deposition of p-CdTe films: Structural, optical and electrical properties. Sol. Energy 106, 56–62 (2014)

    Article  CAS  Google Scholar 

  9. H. Robatjazi, H. Eshghi, Elimination of secondary oxide phases in CdTe nanostructured thin films prepared by conventional spray pyrolysis, and the influence of thermal annealing. J. Electron. Mater. 52, 5922–5930 (2023)

    Article  CAS  Google Scholar 

  10. S.K. Pandey, U. Tiwari, R. Raman, C. Prakash, V. Krishna, V. Dutta, K. Zimik, Growth of cubic and hexagonal CdTe thin films by Pulsed laser deposition. Thin Solid Films 473, 54–57 (2005)

    Article  CAS  Google Scholar 

  11. Ch. Ding, Zh. Ming, B. Li, L. Feng, J. Wu, Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar+O2 atmosphere. Mater. Sci. Eng. B 178, 801–806 (2013)

    Article  CAS  Google Scholar 

  12. A. Arnoult, J. Cibert, Surface dynamics during CdTe growth by molecular beam epitaxy. Appl. Phys. Lett. 66, 2397–2399 (1995)

    Article  CAS  Google Scholar 

  13. W.W. Pan, R.J. Gu, Z.K. Zhang, W. Lei, G.A. Umana-Membreno, D.J. Smith, J. Antoszewski, L. Faraone, Defect engineering in MBE-grown CdTe bufer layers on GaAs (211) B substrates. J. Electron. Mater. 51, 4869–4883 (2022)

    Article  CAS  Google Scholar 

  14. R. Kulkarnia, S. Rondiyaa, A. Pawbakea, R. Waykara, A. Jadhavara, V. Jadkara, A. Bhordea, A. Datec, H. Pathand, S. Jadkard, Structural and optical properties of CdTe thin films deposited using RF magnetron sputtering. Energy Procedia 110, 188–195 (2017)

    Article  Google Scholar 

  15. P. Gu, X. Zhu, J. Li, H. Wu, D. Yang, Influence of sputtering power on structural, optical and electrical properties of CdTe thin films prepared by DC magnetron sputtering. J. Mater. Sci.: Mater Electron. 29, 14635–14642 (2018)

    CAS  Google Scholar 

  16. E. Akbarnejad, M. Ghoranneviss, A. Salar Elahi, cadmium telluride nanostructure deposition by RF magnetron sputtering on flexible Cu foils. J. Inorg. Organomet. Polym. Mater. 26, 270–275 (2016)

    Article  CAS  Google Scholar 

  17. H. Trivedi, A. Boochani, N. Shagya, J. Lahiri, Z. Ghorannevis, A.S. Parmar, Investigating optical, structural and morphological properties of polycrystalline CdTe thin-film deposited by RF magnetron sputtering. Mater. Lett.: X 11, 100087 (2021)

    CAS  Google Scholar 

  18. I.M. Dharmadasa, O.K. Echendu, F. Fauzi, N.A. Abdul-Manaf, O.I. Olusola, H.I. Salim, M.L. Madugu, A.A. Ojo, Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl2. J. Mater. Sci.: Mater. Electron. 28, 2343–2352 (2017)

    CAS  Google Scholar 

  19. M. Becerril, O. Zelaya-Angel, J.R. Vargas-Garcia, R. Ramirez-Bon, J. Gonzalez-Hernandez, Effects of Cd vacancies on the electrical properties of polycrystalline CdTe sputtered films. J. Phys. Chem. Solids 62, 1081 (2001)

    Article  CAS  Google Scholar 

  20. S.S. Babkair, A.A. Ansari, N.M. Al-Twarqi, Activation energy and density of states of CdTe thin films from temperature dependent I–V measurements. Mater. Chem. Phys. 127, 296–299 (2011)

    Article  CAS  Google Scholar 

  21. S.M. Sze, Semiconductor devices: physics and technology (Wiley, New York, 1985)

    Google Scholar 

  22. Ch. Huimin, G. Fuqiang, Zh. Baohua, Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering. J. Semicond. 30, 053001 (2009)

    Article  Google Scholar 

  23. Z. Ghorannevis, E. Akbarnejad, M. Ghoranneviss, Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering. Theor. Appl. Phys. 10, 225–231 (2016)

    Article  Google Scholar 

  24. B. Fultz, J.M. Howe, Transmission electron microscopy and difractometry of materials (Springer Publishing, Berlin, 2012)

    Google Scholar 

  25. V.M. Nikale, S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond. 32, 033001 (2011)

    Article  Google Scholar 

  26. M. Maghouli, H. Eshghi, Studying the effect of deposition time on physical properties of CdTe thin films; influence of CdTe electrical properties on CdS/CdTe heterojunction rectifying behavior. Optik 218, 165132 (2020)

    Article  CAS  Google Scholar 

  27. J.M. Lugo, E. Rosendo, R.R. Trujillo, A.I. Oliva, H.P.L. Guevara, C.I.M. Ruiz, L.T. Yarce, J.S. Arellano, C. Morales, T. Díaz, G. García, Effects of the applied power on the properties of RF-sputtered CdTe films. Mater. Res. Express 6, 076428 (2019)

    Article  CAS  Google Scholar 

  28. Z.M. Nassar, M.H. Yukselici, A.A. Bozkurt, Structural and optical properties of CdTe thin film: a detailed investigation using optical absorption, XRD and Raman spectroscopies. Phys. Status Solidi B 253, 1104–1114 (2016)

    Article  CAS  Google Scholar 

  29. F. de Moure-Flores, J.G. Quinones-Galván, A. Guillén-Cervantes, J.S. Arias-Cerón, A. Hernández-Hernandez, J. Santoyo-Salazar, J. Santos-Cruz, S.A. MayénHernández, M. de la Olvera, J.G. Mendoza-Álvarez, M. Meléndez-Lira, G. Contreras-Puente, CdTe thin films grown by pulsed laser deposition using powder as target: effect of substrate temperature. J. Cryst. Growth 386, 27–31 (2014)

    Article  Google Scholar 

  30. D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983)

    Article  CAS  Google Scholar 

  31. S. Adachi, T. Kimura, N. Suzuki, Optical properties of CdTe: experiment and modelling. J. Appl. Phys. 74, 435–3441 (1993)

    Article  Google Scholar 

  32. H. Eshghi, M. Torabi-Goodarzi, Synthesis of CuO nanowires on Cu-foil using thermal oxidation method, a novel annealing process. Mod. Phys. Lett. B 30, 1650039 (2016)

    Article  CAS  Google Scholar 

  33. P.R. Jubu, F.K. Yam, V.M. Igba, K.P. Beh, Tauc-plot scale and extrapolation effect on bandgap estimation from UV-Vis-NIR data – A case study of β-Ga2O3. J. Solid State Chem. 290, 121576 (2020)

    Article  CAS  Google Scholar 

  34. S. Hamrouni, M. Al-Khalifah, M. El-Bana, S. Zobaidi, S. Belgacem, Deposition and characterization of spin-coated n-type ZnO thin film for potential window layer of solar cell. Appl. Phys. A 124, 1–11 (2018)

    Article  Google Scholar 

  35. M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures. Solid-State Electron. 45, 133–141 (2001)

    Article  CAS  Google Scholar 

  36. N. Tugluoglu, S. Karadeniz, S. Altindal, Effect of series resistance on the performance of silicon Schottky diode in the presence of tin oxide layer. Appl. Surf. Sci. 239, 481–489 (2005)

    Article  CAS  Google Scholar 

  37. L.A. Kosyachenko, O.L. Maslyanchuk, V.M. Sklyarchuk, Special features of charge transport in schottky diodes based on semi-insulating CdTe. Semiconductors 39, 722–729 (2005)

    Article  CAS  Google Scholar 

  38. R.T. Tung, Recent advances in Schottky barrier concepts, Mat. Sci. Eng.:R, 35 (2001) 1–138.

  39. G. Pradeesh, V. Ponnuswamy, B. Gowtham, R. Suresh, J. Chandrasekaran, Influence of annealing temperature on the properties of molybdenum oxide nanoparticles prepared through chemical precipitation method for p-n junction diode application. Optik 175, 217–227 (2018)

    Article  Google Scholar 

  40. S. Çetinkaya, H.A. Çetinkara, F. Bayansal, S. Kahraman, Growth and characterization of CuO nanostructures on Si for the fabrication of CuO/p-Si Schottky diodes. Hindawi Sci. World J. 2013, 126982–126988 (2013)

    Google Scholar 

  41. S.J. Moloi, J.O. Bodunrin, Characterization of interface states of Al/p-Si Schottky diode by current–voltage and capacitance–voltage–frequency measurements. J. Mater. Sci.: Mater. Electron. 34, 1712 (2023)

    CAS  Google Scholar 

  42. A.B. Selcuk, S.B. Ocak, G. Kahraman, A.H. Selcuk, Investigation of diode parameters using I–V and C–V characteristics of Al/maleic anhydride (MA)/p-Si structure. Bull. Mater. Sci. 37, 1717–1724 (2014)

    Article  CAS  Google Scholar 

  43. G. Akgul, F.A. Akgul, E. Mulazimoglu, H.E. Unalan, R. Turan, Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes. J. Phys. D Appl. Phys. 47, 065106–065113 (2014)

    Article  CAS  Google Scholar 

  44. C. Li, J. Poplawsky, Y. Yan, S.J. Pennycook, Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity. Mater. Sci. Semicond. Process. 65, 64–76 (2017)

    Article  CAS  Google Scholar 

  45. S. Fahad, M. Noman, A.F. Qureshi, M. Ali, S. Ahmed, Defect mapping of active layer of CdTe solar cells using charge deep level transient spectroscopy (Q-DLTS). Eng. Fail. Anal. 119, 104991 (2021)

    Article  CAS  Google Scholar 

  46. H.S. Leipner, J. Schreiber, H. Uniewski, S. Hildebrandt, Dislocation luminescence in cadmium telluride. Scanning Microsc. 12, 149–160 (1998)

    Google Scholar 

  47. T. Ablekim, S.K. Swain, J. McCoy, K.G. Lynn, Defects in undoped p-type CdTe single crystals. IEEE J. Photovolt. 6, 1663–1667 (2016)

    Article  Google Scholar 

  48. A. Biaram, H. Eshghi, The effect of etching time on rectifying characteristic in SnO2/p-Si and SnO2/p-PoSi hetrojunction Schottky diodes. Mod. Phys. Lett. B 27, 1350051 (2013)

    Article  Google Scholar 

  49. WCh. Huang, TCh. Lin, Ch.T. Horng, Y.H. Li, The electrical characteristics of Ni/n-GaSb Schottky diode. Mat. Sci. Semicond. Process. 16, 418–423 (2013)

    Article  CAS  Google Scholar 

  50. J.H. Werner, H.H. Guttler, Barrier Inhomogeneities at Schottky Contacts. J. Appl. Phys. 69, 1522–1533 (1991)

    Article  CAS  Google Scholar 

  51. A. Kocyigit, I. Orak, I. Karteri, S. Uruş, The structural analysis of MWCNT-SiO2 and electrical properties on device application. Curr. Appl. Phys. 17, 1215–1222 (2017)

    Article  Google Scholar 

  52. N. Hamdaoui, R. Ajjel, B. Salem, M. Gendry, Distribution of barrier heights in metal/n-InAlAs Schottky diodes from current-voltage-temperature measurements. Mat. Sci. Semicond. Process. 26, 431–437 (2014)

    Article  CAS  Google Scholar 

  53. A. Tataroglu, H. Aydin, A.A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, F. Yakuphanoglu, Photoconducting properties of Cd0.4ZnO0.6/p-Si photodiode by sol gel method. J. Electroceram. 32, 369–375 (2014)

    Article  CAS  Google Scholar 

  54. R.H. Al Orainy, A.A. Hendi, Fabrication and electrical characterization of CdO/p-Si photosensors. Microelectron. Eng. 127, 14–20 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

I confirm that I have mentioned all organizations that funded my research.

Author information

Authors and Affiliations

Authors

Contributions

Zohreh KordGhasemi: Sample preparation, Investigation; Data Curation; Writing-Original Draft; Preparation. Hosein Eshghi: Supervision; Conceptualization; Methodology; Formal Analysis; Reviewing and Editing.

Corresponding author

Correspondence to Hosein Eshghi.

Ethics declarations

Competing of interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KordGhasemi, Z., Eshghi, H. Enhanced photoresponse in Ag/CdTe/p-Si/Al heterostructure photodetectors, the influence of CdTe layer thickness. J Mater Sci: Mater Electron 35, 739 (2024). https://doi.org/10.1007/s10854-024-12515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12515-6

Navigation