Skip to main content
Log in

Structure and high temperature dielectric properties of Dy and Al co-doped CaTiSiO5 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CaTiSiO5-based ceramics show promise as dielectric materials for high-temperature MLCC due to their excellent temperature stability which is expected to be improved by co-doping at the A/B sites. In this study, the Dy and Al co-doped CaTiSiO5 ceramics (Ca1−xDyxTi1−xAlxSiO5, x = 0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08) were fabricated by the conventional solid-state method. The effects of Dy and Al co-doping on the phase structures, dielectric properties and impedance characteristics, were investigated in detail. CaTiSiO5-based ceramics transformed to the paraelectric phase and achieved excellent temperature stability of permittivity by Dy and Al doping, which results from the long-range disorder in the arrangement of Ti displacements within the octahedral chain. Components with x = 0.01 showed linear dielectric response under the electric field. It obtained a high and stable dielectric constant in a wide temperature range (εr = 52, TCC ≤ ± 180 ppm/°C over the temperature range from − 55 to 300 °C), low loss (tanδ < 0.07), high breakdown strength (∼ 516 kV/cm) and high DC resistance (ρ = 3.8 × 1010 Ω cm at 300 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are not publicly available. However, data will be available from the corresponding author upon reasonable request.

References

  1. W. Jia, Y. Hou, M. Zheng, Y. Xu, M. Zhu, K. Yang, H. Cheng, S. Sun, J. Xing, IET Nanodielectrics. 1, 3 (2018)

    Article  Google Scholar 

  2. J. Watson, G. Castro, J. Mater. Sci. Mater. Electron. 26, 9226 (2015)

    Article  CAS  Google Scholar 

  3. S.U. Jan, A. Zeb, S.J. Milne, J. Eur. Ceram. Soc. 36, 2713 (2016)

    Article  Google Scholar 

  4. M.M. Salem, M.A. Darwish, A.M. Altarawneh, Y.A. Alibwaini, R. Ghazy, O.M. Hemeda, D. Zhou, E.L. Trukhanova, A.V. Trukhanov, RSC Adv. 14, 3335 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Li, D. Zhou, D. Wang, W. Zhao, Y. Guo, Z. Shi, T. Zhou, S.-K. Sun, C. Singh, Small 19, 2206958 (2023)

    Article  CAS  Google Scholar 

  6. K. Du, C.-Z. Yin, Y.-B. Guo, X.-C. Wang, W.-Z. Lu, W. Lei, J. Eur. Ceram. Soc. 42, 147 (2022)

    Article  CAS  Google Scholar 

  7. A. Trukhanov, V. Turchenko, I. Bobrikov, S. Trukhanov, I. Kazakevich, A. Balagurov, J. Magn. Magn. Mater. 393, 253 (2015)

    Article  CAS  Google Scholar 

  8. W. Wang, Y. Pu, X. Guo, R. Shi, Y. Shi, M. Yang, J. Li, X. Peng, Y. Li, J. Eur. Ceram. Soc. 39, 5236 (2019)

    Article  CAS  Google Scholar 

  9. Y. Yasumoto, T. Kuwano, H. Taniguchi, S. Fujihara, M. Hagiwara, ACS Appl. Electron. Mater. 5, 4323 (2023)

    Article  CAS  Google Scholar 

  10. B. Fan, F. Liu, G. Yang, H. Li, G. Zhang, S. Jiang, Q. Wang, IET Nanodielectrics. 1, 32 (2018)

    Article  Google Scholar 

  11. I. Levin, T.G. Amos, S.M. Bell, L. Farber, T.A. Vanderah, R.S. Roth, B.H. Toby, J. Solid State Chem. 175, 170 (2003)

    Article  CAS  Google Scholar 

  12. Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang, Q. Wang, Annu. Rev. Mater. Res. 48, 219 (2018)

    Article  CAS  Google Scholar 

  13. M.-J. Pan, C.A. Randall, IEEE Electr. Insul. Mag. 26, 44 (2010)

    Article  CAS  Google Scholar 

  14. X. Xu, A.S. Gurav, P.M. Lessner, C.A. Randall, IEEE Trans. Ind. Electron. 58, 2636 (2011)

    Article  Google Scholar 

  15. H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-McKinstry, C.A. Randall, J. Am. Ceram. Soc. 96, 1209 (2013)

    Article  CAS  Google Scholar 

  16. V.A. Turchenko, S.V. Trukhanov, V.G. Kostishin, F. Damay, F. Porcher, D.S. Klygach, M.G. Vakhitov, L.Y. Matzui, O.S. Yakovenko, B. Bozzo, J. Energy Chem. 69, 667 (2022)

    Article  CAS  Google Scholar 

  17. Y. Yao, V. Zhivulin, A. Zykova, N. Cherkasova, D. Vinnik, E. Trofimov, S. Gudkova, O. Zaitseva, S. Taskaev, L. Alyabyeva, Ceram. Int. 49, 31549 (2023)

    Article  CAS  Google Scholar 

  18. A. Halliyal, A.S. Bhalla, L.E. Cross, R.E. Newnham, J. Mater. Sci. 20, 3745 (1985)

    Article  CAS  Google Scholar 

  19. W. Guo, P. Zhao, Z. Yue, J. Alloys Compd. 946, 169389 (2023)

    Article  CAS  Google Scholar 

  20. U. Bismayer, W. Schmahl, C. Schmidt, L.A. Groat, Phys. Chem. Min. 19, 260 (1992)

    Article  CAS  Google Scholar 

  21. T. Malcherek, C.M. Domeneghetti, V. Tazzoli, E.K.H. Salje, U. Bismayer, Phase Transit. 69, 119 (1999)

    Article  CAS  Google Scholar 

  22. H.W. Meyer, M. Zhang, U. Bismayer, E.K.H. Salje, C. Schmidt, S. Kek, W. Morgenroth, T. Bleser, Phase Transit. 59, 39 (1996)

    Article  CAS  Google Scholar 

  23. E. Salje, C. Schmidt, U. Bismayer, Phys. Chem. Min. 19, 502 (1993)

    Article  CAS  Google Scholar 

  24. M. Zhang, E.K.H. Salje, U. Bismayer, H.-G. Unruh, B. Wruck, C. Schmidt, Phys. Chem. Min. 22, 41 (1995)

    Article  CAS  Google Scholar 

  25. M. Taylor, G.E. Brown, Am. Mineral. 61, 435 (1976)

    CAS  Google Scholar 

  26. J.A. Speer, G.V. Gibbs, Am. Mineral. 61, 238 (1976)

    CAS  Google Scholar 

  27. T. Murata, T. Asaka, S. Hirose, J. Am. Ceram. Soc. 104, 5794 (2021)

    Article  CAS  Google Scholar 

  28. C. Van Heurck, G. Van Tendeloo, S. Ghose, S. Amelinckx, Phys. Chem. Min. 17, 604 (1991)

    Article  Google Scholar 

  29. S. Ghose, Y. Ito, D.M. Hatch, Phys. Chem. Min. 17, 591 (1991)

    Article  CAS  Google Scholar 

  30. R.P. Liferovich, R.H. Mitchell, Phys. Chem. Min. 33, 73 (2006)

    Article  CAS  Google Scholar 

  31. U. Troitzsch, D.J. Ellis, Contrib. Mineral. Petrol. 142, 543 (2002)

    Article  CAS  Google Scholar 

  32. A.R. Chakhmouradian, Am. Mineral. 89, 1752 (2004)

    Article  CAS  Google Scholar 

  33. J.M. Hughes, E.S. Bloodaxe, J.M. Hanchar, E.E. Foord, Am. Mineral. 82, 512 (1997)

    Article  CAS  Google Scholar 

  34. R.P. Liferovich, R.H. Mitchell, Phys. Chem. Min. 32, 40 (2005)

    Article  CAS  Google Scholar 

  35. J. Kimura, H. Taniguchi, T. Iijima, T. Shimizu, S. Yasui, M. Itoh, H. Funakubo, Appl. Phys. Lett. 108, 062902 (2016)

    Article  Google Scholar 

  36. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. O. Yakovenko, O. Lazarenko, L. Matzui, L. Vovchenko, M. Borovoy, P. Tesel’ko, O. Lozitsky, K. Astapovich, A. Trukhanov, S. Trukhanov, J. Mater. Sci. 55, 9385 (2020)

    Article  CAS  Google Scholar 

  38. Z. He, M. Cao, L. Zhou, L. Zhang, J. Xie, S. Zhang, J. Qi, H. Hao, Z. Yao, Z. Yu, J. Am. Ceram. Soc. 101, 5089 (2018)

    Article  CAS  Google Scholar 

  39. X. Peng, Z. Liu, Y. Gu, F. Zhang, Y. Li, J. Phys. Chem. Solids. 132, 83 (2019)

    Article  CAS  Google Scholar 

  40. S. Kek, M. Aroyo, U. Bismayer, C. Schmidt, K. Eichhorn, H.G. Krane, Z. Für Krist -Cryst Mater. 212, 9 (1997)

    Article  CAS  Google Scholar 

  41. R. Liferovich, R. Mitchell, Mineral. Petrol. 83, 271 (2005)

    Article  CAS  Google Scholar 

  42. J.B. Higgins, P.H. Ribbe, Am. Mineral. 61, 878 (1976)

    CAS  Google Scholar 

  43. H.J.A. Koopmans, G.M.H. Van De Velde, P.J. Gellings, Acta Crystallogr. C 39, 1323 (1983)

    Article  Google Scholar 

  44. V. Turchenko, A. Bondyakov, S. Trukhanov, I. Fina, V. Korovushkin, M. Balasoiu, S. Polosan, B. Bozzo, N. Lupu, A. Trukhanov, J. Alloys Compd. 931, 167433 (2023)

    Article  CAS  Google Scholar 

  45. J. Pantić, V. Urbanovich, V. Poharc-Logar, B. Jokić, M. Stojmenović, A. Kremenović, B. Matović, Phys. Chem. Min. 41, 775 (2014)

    Article  Google Scholar 

  46. W. Jia, Y. Hou, M. Zheng, Y. Xu, X. Yu, M. Zhu, K. Yang, H. Cheng, S. Sun, J. Xing, J. Am. Ceram. Soc. 101, 3468 (2018)

    Article  CAS  Google Scholar 

  47. P. Macedo, M. CT, R. Bose, J. Am. Ceram. Soc. 55, 492 (1972)

    Article  Google Scholar 

  48. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  Google Scholar 

  49. C.C. Wang, C.M. Lei, G.J. Wang, X.H. Sun, T. Li, S.G. Huang, H. Wang, Y.D. Li, J. Appl. Phys. 113, 094103 (2013)

    Article  Google Scholar 

  50. R. Gerhardt, J. Phys. Chem. Solids. 55, 1491 (1994)

    Article  CAS  Google Scholar 

  51. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)

    Article  CAS  Google Scholar 

  52. S. Trukhanov, I. Troyanchuk, N. Pushkarev, H. Szymczak, J. Exp. Theor. Phys. 95, 308 (2002)

    Article  CAS  Google Scholar 

  53. A. Dementjev, O. Ivanova, L. Vasilyev, A. Naumkin, D. Nemirovsky, D. Shalaev, J. Vac Sci. Technol. Vac Surf. Films. 12, 423 (1994)

    Article  CAS  Google Scholar 

  54. M.C. Biesinger, L.W. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 887 (2010)

    Article  CAS  Google Scholar 

  55. V. Tomer, C.A. Randall, J. Appl. Phys. 104, 074106 (2008)

    Article  Google Scholar 

  56. C. Luo, Q. Feng, N. Luo, C. Yuan, C. Zhou, Y. Wei, T. Fujita, J. Xu, G. Chen, Chem. Eng. J. 420, 129861 (2021)

    Article  CAS  Google Scholar 

  57. T. Tunkasiri, G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767 (1996)

    Article  CAS  Google Scholar 

  58. S. Trukhanov, L. Lobanovski, M. Bushinsky, V. Fedotova, I. Troyanchuk, A. Trukhanov, V. Ryzhov, H. Szymczak, R. Szymczak, M. Baran, J. Phys. Condens. Matter. 17, 6495 (2005)

    Article  CAS  Google Scholar 

  59. S. Liu, W. Feng, J. Li, B. He, M. Liu, Z. Bao, D. Luo, C. Zhao, J. Eur. Ceram. Soc. 42, 7430 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFB3800604).

Author information

Authors and Affiliations

Authors

Contributions

Hanwen Ni: writing-original draft, investigation, data curation. Faqiang Zhang: methodology, methodology, methodology. Zichen He: methodology, writing—review & editing. Zhifu Liu: conceptualization, resources, project administration, funding acquisition.

Corresponding authors

Correspondence to Zichen He or Zhifu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, H., Zhang, F., He, Z. et al. Structure and high temperature dielectric properties of Dy and Al co-doped CaTiSiO5 ceramics. J Mater Sci: Mater Electron 35, 731 (2024). https://doi.org/10.1007/s10854-024-12497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12497-5

Navigation