Skip to main content
Log in

Influence of light and humidity on the synthesis and characterization of perovskite FAPbI3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite solar cells have gained more popularity in recent years because of their high efficiency and low cost. The most widely employed active layer in perovskite solar cells is FAPbI3, which possesses higher stability, efficiency, and smaller bandgap value. However, its sensitivity to light and humidity makes it challenging to prepare under normal conditions in an economical manner. In this paper, we tried to control not only humidity during the annealing stage but also light intensity conditions of FAPbIsamples. Here, we synthesize samples in four different ways: (i) Without dark annealing; (ii) Vacuum-assisted without dark annealing; (iii) Dark annealing; and (iv) Vacuum-assisted dark annealing. Among these methods, Dark annealing and Vacuum-assisted dark annealing are two effective methods where we controlled light during the annealing stage. The morphological, structural, and optical characteristics of the samples were investigated. The FTIR data showed that the relative humidity of the sample is favourably reduced for the samples prepared using vacuum-assisted methods. X-ray analysis confirmed the α phase of FAPbI3, which is a favourable phase for solar cell applications. The FESEM analysis confirmed the defect-free morphology of the prepared sample. The prepared α- FAPbIaccounts for a bandgap value of 1.51 eV, which is quite close to the ideal bandgap value. The α phase of FAPbIis also conformed from TEM analysis. Thermal stability of sample was analysed by TGA/DTA and got a decomposition temperature of 442 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. D. Gao, B. Li, Z. Li, X. Wu, S. Zhang, D. Zhao, X. Jiang, C. Zhang, Y. Wang, Z. Li, N. Li, S. Xiao, W.C.H. Choy, A.K.-Y. Jen, S. Yang, Z. Zhu, Adv. Mater. (2023). https://doi.org/10.1016/j.matt.2021.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  2. Q. Meng, Y. Chen, Y.Y. Xiao, J. Sun, X. Zhang, C.B. Han, H. Gao, Y. Zhang, H. Yan, J. Mater. Sci.: Mater. Electron. 32, 12784 (2021)

    CAS  Google Scholar 

  3. K. Sveinbjörnsson, K. Aitola, J. Zhang, M.B. Johansson, X. Zhang, J.-P. Correa-Baena, A. Hagfeldt, G. Boschloo, E.M.J. Johansson, J. Mater. Chem. Mater. 4, 16536 (2016)

    Article  Google Scholar 

  4. M.F. Mohamad Noh, N.A. Arzaee, I.N. Nawas Mumthas, N.A. Mohamed, S.N.F. Mohd Nasir, J. Safaei, A.R. Yusoff, M.K. Nazeeruddin, M.A. Mat Teridi, J. Mater. Chem. A Mater.   8, 10481 (2020)

    Article  CAS  Google Scholar 

  5. H. Gao, C. Bao, F. Li, T. Yu, J. Yang, W. Zhu, X. Zhou, G. Fu, Z. Zou, ACS Appl. Mater. Interfaces. 7, 9110 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. S. Monika, S. Pachori, Kumari, A.S. Verma, J. Mater. Sci.: Mater. Electron. 31, 18004 (2020)

    Google Scholar 

  7. F.F. Targhi, Y.S. Jalili, F. Kanjouri, Results Phys. 10, 616 (2018)

    Article  Google Scholar 

  8. N. Heikkilä, (2017) Nina heikkilä Influence of ambient working conditions on the performance of planar and mesoscopic perovskite so-lar cell architectures (n.d.)

  9. A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. H. Xie, X. Yin, Y. Guo, J. Liu, W. Que, G. Wang, Phys. Status Solidi - Rapid Res. Lett. 13, 1800566 (2019)

    Article  Google Scholar 

  11. X. Zheng, C. Wu, S.K. Jha, Z. Li, K. Zhu, S. Priya, ACS Energy Lett. 1, 1014 (2016)

    Article  CAS  Google Scholar 

  12. C. Wu, D. Wang, Y. Zhang, F. Gu, G. Liu, N. Zhu, W. Luo, D. Han, X. Guo, B. Qu, S. Wang, Z. Bian, Z. Chen, L. Xiao, Adv. Funct. Mater. 29, 1902974 (2019)

    Article  Google Scholar 

  13. A. Jana, Q. Ba, A.S. Nissimagoudar, K.S. Kim, J. Mater. Chem. Mater. 7, 25785 (2019)

    Article  CAS  Google Scholar 

  14. K. Kim, C. Park, E. Cha, D. Kang, J. Park, S. Cho, Y. Yi, S. Park, J. Phys. Energy 5, 024011 (2023)

    Article  Google Scholar 

  15. B. Conings, A. Babayigit, T. Vangerven, J. D’Haen, J. Manca, H.-G. Boyen, J. Mater. Chem. Mater. 3, 19123 (2015)

    Article  CAS  Google Scholar 

  16. X. Gong, M. Li, X.-B. Shi, H. Ma, Z.-K. Wang, L.-S. Liao, Adv. Funct. Mater. 25, 6671 (2015)

    Article  CAS  Google Scholar 

  17. Y. Cheng, X. Xu, Y. Xie, H.-W. Li, J. Qing, C. Ma, C.-S. Lee, F. So, S.-W. Tsang, Solar RRL. 1, 1770131 (2017)

    Article  Google Scholar 

  18. X. Xu, C. Ma, Y.-M. Xie, Y. Cheng, Y. Tian, M. Li, Y. Ma, C.-S. Lee, S.-W. Tsang, J. Mater. Chem. Mater. 6, 7731 (2018)

    Article  CAS  Google Scholar 

  19. P. Roy, N. Kumar Sinha, S. Tiwari, A. Khare, Sol. Energy. 198, 665 (2020)

    Article  CAS  Google Scholar 

  20. M. Mozaffari, A. Behjat, B.B.F. Mirjalili, Sol. Energy. 174, 780 (2018)

    Article  CAS  Google Scholar 

  21. G.S. Shin, Y. Zhang, N.G. Park, ACS Appl. Mater. Interfaces. 12, 15167 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. X. Yin, Y. Guo, J. Liu, P. Chen, W. Chen, M. Que, W. Que, C. Niu, J. Bian, Y. Yang, Thin Solid Films. 636, 664 (2017)

    Article  CAS  Google Scholar 

  23. D.G. Lee, D.H. Kim, J.M. Lee, B.J. Kim, J.Y. Kim, S.S. Shin, H.S. Jung, Adv. Funct. Mater. 31, 2006718 (2021)

    Article  CAS  Google Scholar 

  24. J. Schlipf, L. Bießmann, L. Oesinghaus, E. Berger, E. Metwalli, J.A. Lercher, L. Porcar, P. Müller-Buschbaum, J. Phys. Chem. Lett. 9, 2015 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. S. Casaluci, L. Cinà, A. Pockett, P.S. Kubiak, R.G. Niemann, A. Reale, A. Di Carlo, P.J. Cameron, J. Power Sources. 297, 504 (2015)

    Article  CAS  Google Scholar 

  26. G. Murugadoss, P. Arunachalam, S.K. Panda, M. Rajesh Kumar, J.R. Rajabathar, H. Al-Lohedan, M.D. Wasmiah, J. Mater. Res. Technol. 12, 1924 (2021)

    Article  CAS  Google Scholar 

  27. V. Cimrová, M. Guesmi, S. Eom, Y. Kang, D. Výprachtický, Materials 16, 1049 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Z. Zhou, S. Pang, F. Ji, B. Zhang, G. Cui, Chem. Commun. 52, 3828 (2016)

    Article  CAS  Google Scholar 

  29. M. Tammer, Colloid Polym. Sci. 283, 235 (2004)

    Article  CAS  Google Scholar 

  30. R.T. Wang, A.F. Xu, W. Li, Y. Li, G. Xu, J. Phys. Chem. Lett. 12, 5332 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. F. Cheng, S. Zhan, X. Dai, X. Huang, B. Wu, N. Zheng, Energy Fuels. 35, 19035 (2021)

    Article  CAS  Google Scholar 

  32. S. Adjokatse, H.H. Fang, H. Duim, M.A. Loi, Nanoscale. 11, 5989 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. H. Chen, Y. Chen, T. Zhang, X. Liu, X. Wang, Y. Zhao, Small Struct. 2, 2000130 (2021)

    Article  CAS  Google Scholar 

  34. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014)

    Article  CAS  Google Scholar 

  35. S. Motavassel, M. Seifouri, S. Olyaee, Appl. Phys. Mater. Sci. Process. 127, 96 (2021)

    Article  CAS  Google Scholar 

  36. N. Li, Z. Zhu, J. Li, A.K.Y. Jen, L. Wang, Adv. Energy Mater. 8, 1800525 (2018)

    Article  Google Scholar 

  37. G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang, H. Chen, W. Chen, X. Hao, Y. Li, Y. Li, Adv. Funct. Mater. 28, 1804427 (2018)

    Article  Google Scholar 

  38. W. He, J. Hu, C. Chen, Y. Chen, L. Zeng, X. Zhang, B. Cai, Y. Mai, F. Guo, ACS Appl. Mater. Interfaces. 12, 55830 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. L.K. Gao, Y.L. Tang, X.F. Diao, Mater. Res. Express 7, 116201 (2020)

    Article  CAS  Google Scholar 

  40. J.M. Yang, S.G. Kim, J.Y. Seo, C. Cuhadar, D.Y. Son, D. Lee, N.G. Park, Adv. Electron. Mater. 4, 1800 (2018)

    Google Scholar 

  41. B. Slimi, M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou, B. Marí, Monatsh Chem. 148, 835 (2017)

    Article  CAS  Google Scholar 

  42. Q. Han, S. Bae, P. Sun, Y. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Adv. Mater. 28, 2253 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, Y. Hao, Nano Energy. 28, 417 (2016)

    Article  CAS  Google Scholar 

  44. Y. Wang, S. Li, P. Zhang, D. Liu, X. Gu, H. Sarvari, Z. Ye, J. Wu, Z. Wang, Z.D. Chen, Nanoscale. 8, 19654 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. M. Tan, B. Chen, Y. Zhang, M. Ni, W. Wang, H. Zhang, Q. Zhou, Y. Bao, Y. Wang, J. Phys. Chem. C 124, 5093 (2020)

    Article  CAS  Google Scholar 

  46. Y. Zhang, S. Seo, Y. Soo, Y. Lim, S.-G. Kim, D.-K. Kim, S.-H. Lee, H. Lee, H. Shin, Cheong, N.-G. Park, Supporting information achieving reproducibility and high efficiency (> 21%) perovskite solar cells with a pre-synthesized FAPbI 3 powder. ACS Energy Lett. 5, 360–366 (2019)

    Article  Google Scholar 

  47. Y. Zhang, S. Seo, S.Y. Lim, Y. Kim, S.G. Kim, D.K. Lee, S.H. Lee, H. Shin, H. Cheong, N.G. Park, ACS Energy Lett. 5, 360 (2020)

    Article  CAS  Google Scholar 

  48. Q. Wei, W. Zi, Z. Yang, D. Yang, Sol. Energy. 174, 933 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank STIC, Cochin University of Science and Technology, Kochi, and SPAP, Mahatma Gandhi University, Kottayam for their assistance with characterization. We would like to acknowledge Ms. Gopika G Nair and Ms. Bushramol. S, research scholars, Department of Physics, CMS College Kottayam (Autonomous) for their valuable contributions in proofreading and editing this article.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Arjun Suresh P, Greeshma Sara John, and Athira Maria Johnson. The first draft of the manuscript was written by Arjun Suresh P and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript. Arun Kumar K V and Sajeev U.S. have supervised and edited the manuscript.

Corresponding author

Correspondence to Arun Kumar K. V..

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjun Suresh, P., John, G.S., Johnson, A.M. et al. Influence of light and humidity on the synthesis and characterization of perovskite FAPbI3 thin films. J Mater Sci: Mater Electron 35, 943 (2024). https://doi.org/10.1007/s10854-024-12487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12487-7

Navigation