Skip to main content
Log in

Synthesis of CeO2-reduced graphene oxide nanocomposite for display and latent fingerprint application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the synthesis of CeO2-rGO nanocomposites by hydrothermal method for display and forensic applications. The prepared CeO2/rGO nanocomposites were subjected to powder X-ray diffraction (PXRD), Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy, UV–Visible spectroscopic analysis, Photoluminescence study (PL), and Fourier-transform infrared analysis (FTIR). The PXRD image reveals cubic in structure. The SEM image reveals spherical structure of nanocomposites. The energy bandgap of nanocomposites is found to be 2.94 eV using optical absorption study. FTIR spectroscopy analysis showed the purity of synthesized specimens.The PL of nanocomposites shows three prominent emission peaks at 425, 512, and 594 nm. The observed Commission Internationale de I’Eclairage (CIE) results were found to be near white region. The charge-transfer kinetics were investigated through electrochemical impedance spectroscopy. A CeO2-rGO composite was found to be a substitute to luminescent powder for protected discovery and subjective improvement of latent fingerprints kept onto glassplate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are not openly available due to unpublished this work anywhere and are available from the corresponding author upon reasonable request.

References

  1. J. Qian et al., Graphene quantum dots-assisted exfoliation of graphitic carbon nitride to prepare metal-free zero-dimensional/two-dimensional composite photocatalysts. J. Mater. Sci. 53(17), 12103–12114 (2018)

    Article  CAS  Google Scholar 

  2. F. Salehnia, M. Hosseini, M.R. Ganjali, Enhanced electrochemiluminescence of luminol by an in situ silver nanoparticle-decorated graphene dot for glucose analysis. Anal. Methods 10(5), 508–514 (2018)

    Article  CAS  Google Scholar 

  3. H. Gu et al., Quasi-one-dimensional graphene nanoribbon-supported MoS2 nanosheets for enhanced hydrogen evolution reaction. RSC Adv. 6(17), 13757–13765 (2016)

    Article  CAS  Google Scholar 

  4. S. Ghasemi et al., Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants. J. Hazard. Mater. 199–200, 170–178 (2012)

    Article  PubMed  Google Scholar 

  5. F. Nemati, R. Zare-Dorabei, A ratiometric probe based on Ag2S quantum dots and graphitic carbon nitride nanosheets for the fluorescent detection of cerium. Talanta 200, 249–255 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. K. Novoselov et al., Electronic properties of graphene. Phys. Status Solidi 244(11), 4106–4111 (2007)

    Article  CAS  Google Scholar 

  7. A.H. Castro Neto et al., The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  CAS  Google Scholar 

  8. D. Abergel et al., Properties of graphene: a theoretical perspective. Adv. Phys. 59(4), 261–482 (2010)

    Article  CAS  Google Scholar 

  9. L. Falkovsky, Optical properties of graphene. J. Phys. 129, 1012004 (2008)

    Google Scholar 

  10. A. Karimi et al., Rapid and sensitive detection of hydrogen peroxide in milk by Enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sens. Actuator B Chem. 271, 90–96 (2018)

    Article  CAS  Google Scholar 

  11. D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of grapheme and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Article  CAS  Google Scholar 

  12. J. Mohanraj et al., Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 566, 463–472 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. B.P. Vinayan et al., Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J. Mater. Chem. 22(19), 9949–9956 (2012)

    Article  CAS  Google Scholar 

  14. J. Kan, Y. Wang, Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites. Sci. Rep. 3(1), 3502 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. C.G. Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007)

    Article  Google Scholar 

  16. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensionalnanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009)

    Article  CAS  Google Scholar 

  17. O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49(1), 11–18 (2011)

    Article  CAS  Google Scholar 

  18. J. Du, X.Y. Lai, N.L. Yang, J. Zhai, D. Kisailus, F.B. Su, D. Wang, L. Jiang, Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5, 590–596 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Y.Y. Liang, Y. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. Z.S. Wu, W.C. Ren, D.W. Wang, F. Li, B.L. Liu, H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 10, 5835–5842 (2010)

    Article  Google Scholar 

  21. M. Hosseini et al., Enhanced solid-state electrochemiluminescence of Ru (bpy) 3 2+ with nano-CeO2 modified carbon paste electrode and its application in tramadol determination. Anal. Methods 7(5), 1936–1942 (2015)

    Article  CAS  Google Scholar 

  22. M. Hosseini et al., Enhancement of the peroxidase-like activity of cerium-doped ferrite nanoparticles for colorimetric detection of H2O2 and glucose. Anal. Methods 9(23), 3519–3524 (2017)

    Article  CAS  Google Scholar 

  23. S. Khan, M. Faisal, M. Rahman, A. Jamal, Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci. Total. Environ. 409, 2987–2992 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. L. Jiang et al., Controlled synthesis of CeO2/graphene nanocomposites with highly enhanced optical and catalytic properties. J. Phys. Chem. C 116(21), 11741–11745 (2012)

    Article  CAS  Google Scholar 

  25. T. Huang et al., Synthesis and photocatalytic performance of CuO-CeO2/graphene oxide. Mater. Lett. 185, 503–506 (2016)

    Article  CAS  Google Scholar 

  26. F. Nemati et al., Cerium functionalized graphene nano-structures and their applications; a review. Environ. Res. 208, 112685 (2022)

    Article  CAS  PubMed  Google Scholar 

  27. P. Suvarnaphaet, S. Pechprasarn, Graphene-based materials for biosensors: a review. Sensors 17(10), 2161 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  28. S. Mohammad Beigi et al., An enhancement of luminolchemiluminescence by cobalt hydroxide decorated porous graphene and its application in glucose analysis. Anal. Methods 11(10), 1346–1352 (2019)

    Article  CAS  Google Scholar 

  29. G. Williams, B. Seger, P.V. Kamat, TiO2-Graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)

    Article  Google Scholar 

  30. Z. Yang et al., Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019)

    Article  CAS  Google Scholar 

  31. V. Sharma, A. Das, V. Kumar, O. Ntwaeaborwa, H. Swart, Potential of Sr4Al14O25: Eu2+, Dy3+ inorganic oxide-basednanophosphor in Latent fingermark detection. J. Mater. Sci. 49, 2225–2234 (2014)

    Article  CAS  Google Scholar 

  32. M. Saif, M. Shebl, A. Nabeel, R. Shokry, H. Hafez, A. Mbarek, K. Damak, R. Maalej, M. Abdel-Mottaleb, Novel non-toxic and red luminescent sensor based on Eu3+:Y2Ti2O7/SiO2 nano-powderfor latent fingerprint detection. Sens. Actuators B 220, 162–170 (2015)

    Article  CAS  Google Scholar 

  33. M. Wang, M. Li, M. Yang, X. Zhang, A. Yu, Y. Zhu, P. Qiu, C. Mao, NIR-induced highly sensitive detection of latent fingermarks by NaYF4: Yb, Erupconversion nanoparticles in a dry powder state. Nano Res. 8, 1800–1810 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Wang, M. Li, A. Yu, J. Wu, C. Mao, Rare earth fluorescent nanomaterials for enhanced development of latent fingerprints. ACS Appl. Mater. Interfaces 7, 28110–28115 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Wang, Y. Zhu, C. Mao, Synthesis of NIR-Responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates. Langmuir 31, 7084–7090 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Dhanalakshmi, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, Daruka Prasad B Sonochemically assisted hollow/solid BaTiO3: Dy3+ microspheres and their applications in effective detection of latent fingerprints and lip prints. J. Sci. Adv. Mater. Devices 2, 22–33 (2017)

    Article  Google Scholar 

  37. R.B. Basavaraj, H. Nagabhushana, G.P. Darshan, S.C. Sharma, K. Venkatachalaiah, Ultrasound assisted rare earth doped Wollastonite nanopowders: labeling agent for imaging eccrine latent fingerprints and cheiloscopy applications. J. Ind. Eng. Chem. 51, 90–105 (2017)

    Article  Google Scholar 

  38. K. Venkatachalaiah, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, B. DarukaPrasad, Novel and highly efficient red luminescent sensor based SiO2@ Y2O3:Eu3+, M+(M+= Li, Na, K) composite core–shell fluorescent markers for latent fingerprintrecognition, security ink and solid state lightning applications. Sens. Actuators B 251, 310–325 (2017)

    Article  CAS  Google Scholar 

  39. M. Weber, Optical spectra of Ce3+ and Ce3+ Sensitized fluorescence in YAlO3. J. Appl. Phys. 44, 3205–3208 (1973)

    Article  CAS  Google Scholar 

  40. P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, H.R. Shams, Synthesis, characterization, photoluminescence and photocatalytic properties of CeO2 nanoparticles by the sonochemical method. J. Clust. Sci. 24, 1151–1162 (2013)

    Article  CAS  Google Scholar 

  41. L. Li, S. Wang, G. Mu, X. Yin, K. Ou, L. Yi, A novel violet/blue light-emitting device based on Ce2Si2O7. Sci. Rep. 5(1), 16659 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  42. S. Sharma, B. Rohini, H. Nagabhushana, R. Basavaraj, G. Darshan, R. Sudarmani, Fabricated CeO nanopowders as a novel sensing platform for advanced forensic, electrochemical and photocatalytic applications. Appl. Nanosci. (2017). https://doi.org/10.1007/s13204-017-0611-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. R. Bhargava et al., Hydroelectric cell based on a cerium oxide-decorated reduced graphene oxide (CeO2-rG) nanocomposite generates green electricity by room—temperature water splitting. Energy Fuels 34(10), 13067–13078 (2020)

    Article  CAS  Google Scholar 

  44. S. Shirbhate, D. Lande, S. Acharya, Effect of Pr doping on structural, electrical and dielectric properties of ceria based system as electrolyte for electrochemical device. Ferroelectrics 588(1), 145–156 (2022)

    Article  CAS  Google Scholar 

  45. S. Som, S.K. Sharma, Eu3+/Tb3+-codoped Y2O3 nanophosphors: rietveld refinement, bandgap and photoluminescence optimization. J. Phys. D Appl. Phys. 45(41), 415102 (2012)

    Article  Google Scholar 

  46. R. Verma, S.K. Samdarshi, In situ decorated optimized CeO2 on reduced graphene oxide with enhanced adsorptivity and visible light photocatalytic stability and reusability. J. Phys. Chem. C 120(39), 22281–22290 (2016)

    Article  CAS  Google Scholar 

  47. M.D. Scafetta et al., Band structure and optical transitions in LaFeO3: theory and experiment. J. Phys. Condens. Matter 26(50), 505502 (2014)

    Article  PubMed  Google Scholar 

  48. P. Tumram, P.D. Sahare, S.V. Moharil, Energy transfer studies in Ca10Li (PO4)7: Ce3+, Nd3+. Optik 168, 92–100 (2018)

    Article  CAS  Google Scholar 

  49. V.S. Amrutha et al., Enhanced Sunlight driven photocatalytic performance and visualization of latent fingerprint by green mediated ZnFe2O4-RGO nanocomposite. Arab. J. Chem. 13(1), 1449–1465 (2020)

    Article  CAS  Google Scholar 

  50. K.R. Ashwini et al., Green emitting SrAl2O4:Tb3+ nano-powders for forensic, anti-counterfeiting and optoelectronic devices. Inorg. Chem. Commun. 130, 108665 (2021)

    Article  CAS  Google Scholar 

  51. S. Shirbhate et al., Dopant induced-modulation in reducing ability of cerium in doped ceria system and its effect on oxy-ion conductivity: core study by XPS and XANES probes. ECS J. Solid State Sci. Technol. 10(10), 101010 (2021)

    Article  CAS  Google Scholar 

  52. H.J.A. Yadav et al., Facile ultrasound route to prepare micro/nano superstructures for multifunctional applications. ACS Sustain. Chem. Eng. 5(3), 2061–2074 (2017)

    Article  CAS  Google Scholar 

  53. M. Dhanalakshmi et al., Bio-template assisted solvothermal synthesis of broom-like BaTiO3:Nd3+ hierarchical architectures for display and forensic applications. Mater. Res. Bull. 102, 235–247 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Dr. Amith Yadav H.J. thanks IQAC Davangere University,Davangere, India for the sanction of seed money. The authors are grateful to Prof. Smita A Acharya, Rashtrasant Tukadoji Maharaj Nagpur University for the characterization of the compound.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HJAY contributed toward conceptualization, methodology, software, and writing—Original draft preparation; BE contributed toward conceptualization, reviewing, and editing; MNK contributed toward conceptualization and analysis; SK contributed toward editing; VKR contributed toward software; and VSV contributed toward editing.

Corresponding author

Correspondence to H. J. Amith Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amith Yadav, H.J., Eraiah, B., Kalasad, M.N. et al. Synthesis of CeO2-reduced graphene oxide nanocomposite for display and latent fingerprint application. J Mater Sci: Mater Electron 35, 702 (2024). https://doi.org/10.1007/s10854-024-12466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12466-y

Navigation