Skip to main content
Log in

Synthesis of nickel-copper layered double hydroxides for asymmetric supercapacitors by low-temperature chemical co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a straightforward low-temperature chemical co-precipitation method for the preparation of nickel-copper layered double hydroxide (L-Ni4CuLDH) was reported. The doping of copper element makes the stacking morphology of the composite material change obviously, from large block stacking to small block stacking, which enables greater exposed surface area of the L-Ni4CuLDH, increases the material contacts of the redox reaction and promotes electrode reaction. At 1 A g−1, the specific capacity of L-Ni4CuLDH electrode is 1656.9 F g−1. After it is increased to 20 A g−1, the rate performance is 69.7%. Furthermore, an asymmetric supercapacitor (ASC) was prepared using L-Ni4CuLDH composite as cathode and activated carbon (AC) as anode, which has an energy density of 45.40 Wh kg−1 at 800 W kg−1 (20.22 Wh kg−1 at 8000 W kg−1). Besides, after 10,000 cycles at 5 A g−1, 73.1% of its initial capacitance remained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. H. Jin, D. Yuan, S. Zhu, X. Zhu, J. Zhu, Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors. Dalton Trans. 47, 8706–8715 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Z. Li, D. Yuan, S. Zhu, P. Fan, H. Ma, Q. Zhang, A. Wen, J. Zhu, The multi-structure NiCo2S4 prepared by solvothermal method for supercapacitor accompanied with positron annihilation study. J. Appl. Phys. 125, 175103 (2019)

    Article  Google Scholar 

  3. H. Liu, J. Zhu, Z. Li, Z. Shi, J. Zhu, H. Mei, Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor. Chem. Eng. J. 403, 126325 (2021)

    Article  CAS  Google Scholar 

  4. H. Liu, W. Zhu, D. Long, J. Zhu, G. Pezzotti, Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors. Appl. Surf. Sci. 478, 383–392 (2019)

    Article  CAS  Google Scholar 

  5. D. Long, H. Liu, Y. Yuan, J. Li, Z. Li, J. Zhu, A facile and large-scale synthesis of NiCo-LDHs@rGO composite for high performance asymmetric supercapacitors. J. Alloy. Compd. 805, 1096–1105 (2019)

    Article  CAS  Google Scholar 

  6. Z. Shi, J. Zhu, Z. Li, Q. Xiao, J. Zhu, Sulfur-doped nickel-cobalt double hydroxide electrodes for high-performance asymmetric supercapacitors. ACS Appl. Energ. Mater. 3, 11082–11090 (2020)

    Article  CAS  Google Scholar 

  7. D. Wang, W. Zhu, Y. Yuan, G. Du, J. Zhu, X. Zhu, G. Pezzotti, Kelp-like structured NiCo2S4-C-MoS2 composite electrodes for high performance supercapacitor. J. Alloy. Compd. 735, 1505–1513 (2018)

    Article  CAS  Google Scholar 

  8. Y. Yuan, D. Long, Z. Li, J. Zhu, Fe substitution in urchin-like NiCo2O4 for energy storage devices. RSC Adv. 9, 7210–7217 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Yuan, W. Zhu, G. Du, D. Wang, J. Zhu, X. Zhu, G. Pezzotti, Two-step method for synthesizing polyaniline with bimodal nanostructures for high performance supercapacitors. Electrochim. Acta 282, 286–294 (2018)

    Article  CAS  Google Scholar 

  10. S.G. Sayyed, A.V. Shaikh, U.P. Shinde, P. Hiremath, N. Naik, Copper oxide-based high-performance symmetric flexible supercapacitor: potentiodynamic deposition. J Mater Sci-Mater El 34, 1361 (2023)

    Article  CAS  Google Scholar 

  11. A.M. Elsayed, M.A. Alnuwaiser, M. Rabia, Effect of brain-like shape polypyrrole nanomaterial on the capacitance and stability enhancements of β-Ni(OH)2 two-symmetric electrodes supercapacitor. J Mater Sci-Mater El 34, 1678 (2023)

    Article  CAS  Google Scholar 

  12. Y. Zhang, P. Li, S. Wang, J. Zhang, L. Liu, R. Liu, X. Zhu, Effect of chloride ions on the sparking voltage of working electrolytes and its restraint method. J. Phys. Chem. C 127, 16148–16155 (2023)

    Article  CAS  Google Scholar 

  13. J. Xu, X. Li, X. Li, S. Li, L. Zhao, D. Wang, W. Xing, Z. Yan, Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance. J. Alloy. Compd. 787, 27–35 (2019)

    Article  CAS  Google Scholar 

  14. Y. Wang, H. Yang, H. Lv, Z. Zhou, Y. Zhao, H. Wei, Z. Chen, High performance flexible asymmetric supercapacitor constructed by cobalt aluminum layered double hydroxide @ nickel cobalt layered double hydroxide heterostructure grown in-situ on carbon cloth. J. Colloid Interface Sci. 610, 35–48 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. B. Xiao, W. Zhu, Z. Li, J. Zhu, X. Zhu, G. Pezzotti, Tailoring morphology of cobalt-nickel layered double hydroxide via different surfactants for high-performance supercapacitor. R. Soc. Open Sci. 5, 180867 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Q. Xiao, Y. Yuan, J. Zhu, Z. Shi, Z. Li, J. Zhu, Carbonate doped nickel-cobalt layered double hydroxide for high performance asymmetric supercapacitors. J. Alloy. Compd. 916, 165391 (2022)

    Article  CAS  Google Scholar 

  17. Z. Shi, Y. Yuan, Q. Xiao, Z. Li, J. Zhu, Carbonate doped NiCo-LDH modified with PANI for high performance asymmetric supercapacitors. CrystEngComm 24, 3546–3555 (2022)

    Article  CAS  Google Scholar 

  18. F. Tang, Q. Xiao, W. Zhu, G. Pezzotti, J. Zhu, Facile syntheses of Fe2O3-rGO and NiCo-LDH-rGO nanocomposites for high-performance electrochemical capacitors. J. Colloid Interface Sci. 634, 357–368 (2023)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Yuan, Z. Li, Z. Shi, J. Zhu, A facile way to grow NiMn-LDH sheets on KCu7S4 nanowires with synergistic effects for applications in hybrid supercapacitors. J. Alloy. Compd. 825, 154056 (2020)

    Article  CAS  Google Scholar 

  20. S. Polat, G. Atun, Enhanced cycling stability performance for supercapacitor application of NiCoAl-LDH nanofoam on modified graphite substrate. J. Ind. Eng. Chem. 99, 107–116 (2021)

    Article  CAS  Google Scholar 

  21. J. Wang, Q. Ding, C. Bai, F. Wang, S. Sun, Y. Xu, H. Li, Synthesis of CNTs/CoNiFe-LDH nanocomposite with high specific surface area for asymmetric supercapacitor. Nanomaterials 11, 2155 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, M. Liu, Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. Nano Energy 26, 66–73 (2016)

    Article  CAS  Google Scholar 

  23. Y. Wang, Y. Liu, M. Zhang, B. Liu, Z. Zhao, K. Yan, One-step architecture of bifunctional petal-like oxygen-deficient NiAl-LDHs nanosheets for high-performance hybrid supercapacitors and urea oxidation. Sci. China-Mater. 65, 1805–1813 (2022)

    Article  CAS  Google Scholar 

  24. W. Xu, X. Zhao, F. Zhan, Q. He, H. Wang, J. Chen, H. Wang, X. Ren, L. Chen, Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: progress and perspectives. Energy Storage Mater. 53, 79–135 (2022)

    Article  Google Scholar 

  25. S. Yao, Z. Zhang, S. Guo, Z. Yu, X. Zhang, P. Zuo, J. Wang, G. Yin, H. Huo, Hierarchical NiMn/NiMn-LDH/ppy-C induced by a novel phase-transformation activation process for long-life supercapacitor. J. Colloid Interface Sci. 622, 1020–1028 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. L. Zhao, S. Lei, Q. Tu, L. Rao, W. Zen, Y. Xiao, B. Cheng, Phase-controlled growth of nickel hydroxide nanostructures on nickel foam for enhanced supercapacitor performance. J. Energy Storage 43, 103171 (2021)

    Article  Google Scholar 

  27. Y. Lin, S. Su, H. Dai, X. Xiang, P. Li, X. Zhu, A multi-layer-structured nickel-based electrode for high-performance binder-free asymmetric quasi-solid-state hybrid supercapacitors. J. Energy Storage 56, 106138 (2022)

    Article  Google Scholar 

  28. J. Wang, T. Qiu, X. Chen, Y. Lu, W. Yang, N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium. J. Power. Sources 293, 178–186 (2015)

    Article  CAS  Google Scholar 

  29. G. Zhang, W. Li, K. Xie, F. Yu, H. Huang, A one-step and binder-free method to fabricate hierarchical nickel-based supercapacitor electrodes with excellent performance. Adv. Funct. Mater. 23, 3675–3681 (2013)

    Article  CAS  Google Scholar 

  30. Z. Zhang, H. Huo, L. Wang, S. Lou, L. Xiang, B. Xie, Q. Wang, C. Du, J. Wang, G. Yin, Stacking fault disorder induced by Mn doping in Ni(OH)2 for supercapacitor electrodes. Chem. Eng. J. 412, 128617 (2021)

    Article  CAS  Google Scholar 

  31. X. Zhu, Y. Wu, Y. Lu, Y. Sun, Q. Wu, Y. Pang, Z. Shen, H. Chen, Aluminum-doping-based method for the improvement of the cycle life of cobalt-nickel hydroxides for nickel-zinc batteries. J. Colloid Interface Sci. 587, 693–702 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. A. Bera, A.K. Das, A. Maitra, R. Bera, S.K. Karan, S. Paria, L. Halder, S.K. Si, B.B. Khatua, Temperature dependent substrate-free facile synthesis for hierarchical sunflower-like nickel-copper carbonate hydroxide with superior electrochemical performance for solid state asymmetric supercapacitor. Chem. Eng. J. 343, 44–53 (2018)

    Article  CAS  Google Scholar 

  33. K.V. Gurav, U.M. Patil, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, J.H. Kim, Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. J. Alloy. Compd. 573, 27–31 (2013)

    Article  CAS  Google Scholar 

  34. S.K. Shinde, V.J. Fulari, D.Y. Kim, N.C. Maile, R.R. Koli, H.D. Dhaygude, G.S. Ghodake, Chemical synthesis of flower-like hybrid Cu(OH)2/CuO electrode: Application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance. Colloid Surf. B-Biointerfaces 156, 165–174 (2017)

    Article  CAS  Google Scholar 

  35. P.W. Yuan, S.H. Guo, S.Q. Gao, J. Wang, W.Q. Chen, M. Li, K.Y. Ma, N. Wang, F. Liu, J.P. Cheng, Influence of Ni/Cu ratio in nickel copper carbonate hydroxide on the phase and electrochemical properties. J. Alloy. Compd. 780, 147–155 (2019)

    Article  CAS  Google Scholar 

  36. M. Zeraati, K. Tahmasebi, Supercapacitor behavior of SiC coated copper hydroxide and copper sulfide nano-wires. J. Alloy. Compd. 786, 798–807 (2019)

    Article  CAS  Google Scholar 

  37. K. Zheng, H. Tan, L. Wang, J. Liu, M. Ding, D. Jia, Vertically oriented Cu2+1O@Cu-MOFs hybrid clusters for high-performance electrochemical capacitors. Adv. Mater. Interfaces 8, 2002145 (2021)

    Article  CAS  Google Scholar 

  38. T. Wang, Q. Xiao, Z. Wang, J. Zhu, Fluorine-doped nickel-copper layered double hydroxide combined with nitrogen-doped reduced graphene oxide for high-performance asymmetric supercapacitor. J. Alloy. Compd. 928, 167226 (2022)

    Article  CAS  Google Scholar 

  39. D. Han, Y. Zhao, Y. Shen, Y. Wei, L. Mao, G. Zeng, Co3O4 nanowire@ultrathin Ni-Co layered double hydroxide core-shell arrays with vertical transfer channel for high-performance supercapacitor. J. Electroanal. Chem. 859, 113887 (2020)

    Article  CAS  Google Scholar 

  40. X. Cao, L. Cui, B. Liu, Y. Liu, D. Jia, W. Yang, J.M. Razal, J. Liu, Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu2+1O hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors. J. Mater. Chem. A 7, 3815–3827 (2019)

    Article  CAS  Google Scholar 

  41. X. Guan, M. Huang, L. Yang, G. Wang, X. Guan, Facial design and synthesis of CoSx/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors. Chem. Eng. J. 372, 151–162 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to the National Natural Science Foundation of China (Grant #52072250) and the Fundamental Research Funds for Central Universities (Grant #20826041E4245) for the support to this work.

Funding

This work was supported by National Natural Science Foundation of China (Grant #52072250) and the Fundamental Research Funds for Central Universities (Grant #20826041E4245).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation and analysis were performed by XC, QX, CC and YM. XZ: wrote the manuscript. TW and JZ: reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiliang Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, T., Xiao, Q. et al. Synthesis of nickel-copper layered double hydroxides for asymmetric supercapacitors by low-temperature chemical co-precipitation method. J Mater Sci: Mater Electron 35, 733 (2024). https://doi.org/10.1007/s10854-024-12436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12436-4

Navigation