Skip to main content
Log in

Composite design for electrochemical improvement through prelithiated Li2SiO3 in rice husk-derived SiO2/rGO as lithium-ion battery anode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The formation of a solid-electrolyte interphase (SEI) layer and Li2O species at an anode driven by thermodynamic spontaneity not only consumes the active Li-ions (Li+), but also generates battery capacity loss. The unstable SEI layer growth directly degrades both battery efficiency and cycling stability. Thereby, prelithiated materials were prepared to militate against the enlargement of Li consumption for Li-ion batteries (LIBs). Here, we demonstrated the hydrothermal synthesis of lithium metasilicate (Li2SiO3), a prelithiated material, with physical characterizations exposing the microflower-like clusters evolved from the attachment of their high-purity primary plates. The electrochemical performance of the pristine Li2SiO3 provided a poor cycling capability in a half coin-cell test with a final discharge capacity of 17 mAh g−1 over 200 cycles, while the silica on reduced graphene oxide (SiO2/rGO) composite represented only ~ 290 mAh g−1. Conversely, the Li2SiO3–SiO2/rGO composite exhibited excellent cyclability over the pristine and SiO2/rGO with final discharge specific capacity up to ~ 470 mAh g−1 at the 200th cycle. Despite the revealed similar electrochemical patterns of the obtained cyclic voltammograms (CVs) for these materials, the curiosity of continuously increased capacity for the Li2SiO3–SiO2/rGO composite and Li+ compensation mechanisms upon cycling of Li2SiO3 were still clearly unsolved. The cycling capacities of the composite were distinctly observed as a great improvement after composite formation between Li2SiO3 and SiO2/rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data in this research article will be made available on request.

Abbreviations

SEI:

Solid electrolyte interface

rGO:

Reduced graphene oxide

LIBs:

Lithium-ion batteries

ICE:

Initial coulombic efficiency

CE:

Coulombic efficiency

EC:

Ethylene carbonate

DMC:

Dimethyl carbonate

NMP:

N-methyl-2-pyrrolidone

PVDF:

Polyvinylidene fluoride

DI water:

Deionized water

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

SAED:

Selected area electron diffraction

CV:

Cyclic voltammetry

References

  1. N. Mahmood, T. Tang, Y. Hou, Adv. Energy Mater. 6, 1600374 (2016)

    Article  Google Scholar 

  2. W. Qi, J.G. Shapter, Q. Wu, T. Yin, G. Gao, D. Cui, J. Mater. Chem. A 5, 19521 (2017)

    Article  CAS  Google Scholar 

  3. L. He, Z. Gu, Y. Zhang, H. Jing, P. Li, Energ Fuel 37, 4835 (2023)

    Article  CAS  Google Scholar 

  4. Z.-L. Xu, X. Liu, Y. Luo, L. Zhou, J.-K. Kim, Prog. Mater. Sci. 90, 1 (2017)

    Article  Google Scholar 

  5. B.S. Parimalam, A.D. MacIntosh, R. Kadam, B.L. Lucht, J. Phys. Chem. C 121, 22733 (2017)

    Article  CAS  Google Scholar 

  6. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, Carbon 105, 52 (2016)

    Article  CAS  Google Scholar 

  7. H. Adenusi, G.A. Chass, S. Passerini, K.V. Tian, G. Chen, Adv. Energy Mater. 13, 1 (2023)

    Article  Google Scholar 

  8. X. Lan, X. Zhou, Z. Jiao, K. Wang, B. Liu, P. Zhang, B. Xu, Mater. Lett. 353, 135300 (2023)

    Article  CAS  Google Scholar 

  9. C. Sun, X. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, Energy Storage Mater. 32, 497 (2020)

    Article  Google Scholar 

  10. X. Li, H. Yang, CrystEngComm 16, 4501 (2014)

    Article  CAS  Google Scholar 

  11. A. Alemi, S. Khademinia, Int. Nano Lett. 5, 15 (2014)

    Article  Google Scholar 

  12. Y. Zhu, W. Hu, J. Zhou, W. Cai, Y. Lu, J. Liang, X. Li, S. Zhu, Q. Fu, Y. Qian, A.C.S. Appl, Mater. Interfaces 11, 18305 (2019)

    Article  CAS  Google Scholar 

  13. Y. Zhou, S. Feng, P. Zhu, H. Guo, G. Yan, X. Li, M. Su, Y. Liu, Z. Wang, J. Wang, Chem. Eng. J. 415, 128998 (2021)

    Article  CAS  Google Scholar 

  14. N. Kuganathan, L.H. Tsoukalas, A. Chroneos, Solid State Ion. 335, 61 (2019)

    Article  CAS  Google Scholar 

  15. X. Guo, K. Xie, Y. Wang, Z. Kang, W. Zhou, S. Cheng, Int. J. Electrochem. Sci. 13, 5645 (2018)

    Article  CAS  Google Scholar 

  16. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 14, 1 (2015)

    Article  Google Scholar 

  17. V. Laokawee, T. Autthawong, B. Chayasombat, A. Yu, T. Sarakonsri, Solid State Phenom. 302, 51 (2020)

    Article  Google Scholar 

  18. O. Namsar, T. Autthawong, V. Laokawee, R. Boonprachai, M. Haruta, H. Kurata, A. Yu, T. Chairuangsri, T. Sarakonsri, Sustain. Energ. Fuels 4, 4625 (2020)

    Article  CAS  Google Scholar 

  19. H. Zhang, J. Wang, J. Yang, Sci. Rep. 10, 5545 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. N. Mahamai, T. Autthawong, W. Yodying, C. Yodbunork, O. Namsar, T. Sarakonsri, Microflower-Like Lithium Metasilicate for Li-Ion Battery Anode, (The Microscopy Society of Thailand (MST) (Pathum Thani, Thailand, 2022), p.52

    Google Scholar 

  21. M. Nie, D. Chalasani, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, J. Phys. Chem. C 117, 1257 (2013)

    Article  CAS  Google Scholar 

  22. C. Cao, I.I. Abate, E. Sivonxay, B. Shyam, C. Jia, B. Moritz, T.P. Devereaux, K.A. Persson, H.-G. Steinrück, M.F. Toney, Joule 3, 762 (2019)

    Article  CAS  Google Scholar 

  23. A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, NPJ Comput. Mater. 4, 15 (2018)

    Article  Google Scholar 

  24. E. Peled, S. Menkin, J. Electrochem. Soc. 164, A1703 (2017)

    Article  CAS  Google Scholar 

  25. W. Li, F. Wang, M. Ma, J. Zhou, Y. Liu, Y. Chen, RSC Adv. 8, 33652 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Hao, Z. Wang, L. Chen, Mater. Des. 111, 616 (2016)

    Article  CAS  Google Scholar 

  27. K.W. Schroder, H. Celio, L.J. Webb, K.J. Stevenson, J. Phys. Chem. C 116, 19737 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was partially supported by Chiang Mai University, and the authors would like to express their gratitude to the Renewable Energy Laboratory-Advanced Battery Research Unit, Chiang Mai University, for sample preparation, battery cell fabrication, and electrochemical measurements. Also, the authors appreciate the characterizations and facility support provided by the Department of Chemistry, Faculty of Science, Chiang Mai University. This research project was financially supported by the Fundamental Fund 2023, Center of Excellence in Materials Science and Technology under the Administration of Materials Science Research Center of Chiang Mai University. This research has received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation [Grant No. B37G660018].

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Naruephon Mahamai. The first draft of the manuscript was written by Naruephon Mahamai and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thapanee Sarakonsri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahamai, N., Autthawong, T., Namsar, O. et al. Composite design for electrochemical improvement through prelithiated Li2SiO3 in rice husk-derived SiO2/rGO as lithium-ion battery anode. J Mater Sci: Mater Electron 35, 657 (2024). https://doi.org/10.1007/s10854-024-12422-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12422-w

Navigation