Skip to main content
Log in

An estimation of absorption parameters via optical characterization and theoretical analysis of (Ge1S2)100−X(As2Te3)X chalcogenides for Ir applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current investigation reports the optoelectronics studies for (Ge2S8)100−x(As2Te3)x (GSAT) (0 ≤ x ≤ 100) non-crystalline films. The GSAT glasses have been synthesised by using the conventional melt quench method. At 300 K and a vacuum of 10−5 Torr, the GAST films have been thermally evaporated on cleaned glass substrates. The XRD (X-ray diffraction) curves insist the non-crystalline state of the GAST samples. The transmittance and reflectance spectra have been used to evaluate the absorption parameters, optical band gap (Eg), and tailing constraints of the Ge-S-As-Te glasses. Both the values of Eg and the absorption edge energy are lessening; nevertheless, the energy of band tail width rises with the enhancement of As2Te3 ratio at the expense of Ge2S8 contents. Some of the physically criteria viz. glass densities (ρ), compactness (δ), and main atomic volume (Vm) were estimated for GAST glasses. Both the conductance and valance band positions have also been evaluated. The index of refraction (n) has been correlated with Eg values. The obtained results suggest that GSAT films are suitable for many optic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Y. Dai, X. Wang, W. Peng et al., ACS Nano. 11, 7118 (2017). https://doi.org/10.1021/acsnano.7b02811

    Article  CAS  PubMed  Google Scholar 

  2. Highly Efficient Near-Infrared Detector Based on Optically Resonant Dielectric Nanodisks, (2021)

  3. K.J. Smirnov, V.V. Davydov, S.F. Glagolev, G.V. Tushavin, (2018) J Phys.: Conference Series. https://doi.org/10.1088/1742-6596/1124/2/022014

  4. D.C. Sati, A. Dahshan, H.H. Hegazy, K.A. Aly, P. Sharma, Surf. Interfaces. 39, 102995 (2023). https://doi.org/10.1016/j.surfin.2023.102995

    Article  CAS  Google Scholar 

  5. S.R. Alharbi, A.F. Qasrawi, Plasmonics. 12, 1045 (2017). https://doi.org/10.1007/s11468-016-0357-4

    Article  CAS  Google Scholar 

  6. S. Sharda, E. Sharma, A. El-Denglawey et al., Mater. Chem. Phys. 288, 126372 (2022). https://doi.org/10.1016/j.matchemphys.2022.126372

    Article  CAS  Google Scholar 

  7. A.S. Hassanien, A.A. Akl, CrystEngComm. 20, 7120 (2018). https://doi.org/10.1039/C8CE01614C

    Article  CAS  Google Scholar 

  8. S. Sharda, E. Sharma, K.A. Aly, A. Dahshan, P. Sharma, Ceram. Int. 47, 34501 (2021). https://doi.org/10.1016/j.ceramint.2021.08.364

    Article  CAS  Google Scholar 

  9. P. Sharma, N. Sharma, S. Sharda, S.C. Katyal, V. Sharma, Prog. Solid State Chem. 44, 131 (2016). https://doi.org/10.1016/j.progsolidstchem.2016.11.002

    Article  CAS  Google Scholar 

  10. A. Abu El-Fadl, A.S. Soltan, A.S. Aashour, AM Nashaat, Mater. Res. Innovations. 22, 69 (2018). https://doi.org/10.1080/14328917.2016.1265231

    Article  CAS  Google Scholar 

  11. S.S. Fouad, G.A.M. Amin, M.S. El-Bana, J. Non-cryst. Solids. 481, 314 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.11.006

    Article  CAS  Google Scholar 

  12. A.P. Velmuzhov, V.S. Shiryaev, M.V. Sukhanov, T.V. Kotereva, B.S. Stepanov, G.E. Snopatin, J. Non-cryst. Solids. 579, 121374 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121374

    Article  CAS  Google Scholar 

  13. A. Khan, M. Ordu, Optik. 248, 168226 (2021). https://doi.org/10.1016/j.ijleo.2021.168226

    Article  CAS  Google Scholar 

  14. D.C. Sati, A. Dahshan, P. Sharma, Appl. Mater. Today. 17, 142 (2019). https://doi.org/10.1016/j.apmt.2019.08.004

    Article  Google Scholar 

  15. M. Polčík, J. Drahokoupil, I. Drbohlav, L Tichý, J. Non-cryst. Solids. 192–193, 380 (1995)

    Article  Google Scholar 

  16. S. Sharda, E. Sharma, K.A. Aly, A. Dahshan, P. Sharma, Opt. Quant. Electron. 54, 249 (2022). https://doi.org/10.1007/s11082-022-03653-4

    Article  CAS  Google Scholar 

  17. S.H. Mohamed, M.M. Wakkad, A.M. Ahmed, A.K. Diab, EPJ Appl. Phys. 34, 165 (2006)

    Article  CAS  Google Scholar 

  18. E. Sharma, S. Sharda, K.A. Aly, R. Neffati, D.C. Sati, P. Sharma, Opt. Mater. 133, 113063 (2022). https://doi.org/10.1016/j.optmat.2022.113063

    Article  CAS  Google Scholar 

  19. H.H. Hegazy, A. Dahshan, K.A. Aly, Mater. Res. Express. 6, 025204 (2019). https://doi.org/10.1088/2053-1591/aaee4b

    Article  CAS  Google Scholar 

  20. R.R. Reddy, Y. Nazeer Ahammed, Infrared Phys. Technol. 36, 825 (1995)

    Article  CAS  Google Scholar 

  21. NF Mott, (1938) Proceedings of the Physical Society 50: 196

  22. R.A. Street, NF Mott, Phys. Rev. Lett. 35, 1293 (1975)

    Article  CAS  Google Scholar 

  23. D. Singh, S. Kumar, K. Anand, R Thangaraj, Phys. Status Solidi (A) Appl. Mater. Sci. 210, 2128 (2013)

    Article  CAS  Google Scholar 

  24. R. Sharma, S. Sharda, K.A. Aly, A. Dahshan, P. Sharma, J. Mater. Sci.: Mater. Electron. 33, 16320 (2022). https://doi.org/10.1007/s10854-022-08524-y

    Article  CAS  Google Scholar 

  25. E.A. Fagen, H. Fritzsche, J. Non-cryst. Solids. 2, 180 (1970)

    Article  CAS  Google Scholar 

  26. A. Parida, D. Alagarasan, R. Ganesan, S. Bisoyi, R. Naik, RSC Adv. 13, 4236 (2023). https://doi.org/10.1039/D2RA07981J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji Pankove, Optical Processes in Semiconductors (Prentice-Hall, Inc., Englewoad Cliffs, New Jersey, 1971)

    Google Scholar 

  28. A. Sharma, P.B. Barman, J. Therm. Anal. Calorim. 96, 413 (2009). https://doi.org/10.1007/s10973-008-9312-8

    Article  CAS  Google Scholar 

  29. A.S. Hassanien, I. Sharma, J. Alloys Compd. 798, 750 (2019). https://doi.org/10.1016/j.jallcom.2019.05.252

    Article  CAS  Google Scholar 

  30. J. Tauc, A. Menth, J Non-Cryst. Solids 8–10, 569 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  31. E.A. Davis, N.F. Mott, The Philosophical Magazine: A Journal of Theoretical Experimental. Appl. Phys. 22, 0903 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  32. A.A. Ibraheem, K.A. Aly, J. Mater. Sci.: Mater. Electron. 33, 26905 (2022). https://doi.org/10.1007/s10854-022-09355-7

    Article  CAS  Google Scholar 

  33. KA Aly, J. Mater. Sci.: Mater. Electron. 33, 2889 (2022). https://doi.org/10.1007/s10854-021-07496-9

    Article  CAS  Google Scholar 

  34. L. Tichy, H. Ticha, P. Nagels, R. Callaerts, J. Non-cryst. Solids. 240, 177 (1998). https://doi.org/10.1016/S0022-3093(98)00716-9

    Article  CAS  Google Scholar 

  35. F. Urbach, Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  36. A.S. Hassanien, I. Sharma, K.A. Aly, Phys. B: Condens. Matter. 613, 412985 (2021). https://doi.org/10.1016/j.physb.2021.412985

    Article  CAS  Google Scholar 

  37. M. Karimi, M. Rabiee, F. Moztarzadeh, M. Tahriri, M Bodaghi, Curr. Appl. Phys. 9, 1263 (2009). https://doi.org/10.1016/j.cap.2009.02.006

    Article  Google Scholar 

  38. KA Aly, J. Alloys Compd. 630, 178 (2015). https://doi.org/10.1016/j.jallcom.2014.10.079

    Article  CAS  Google Scholar 

  39. S. Sharda, N. Sharma, P. Sharma, V. Sharma, Chalcogenide Lett. 9, 389 (2012)

    CAS  Google Scholar 

  40. M.M. Makhlouf, H.A. Alburaih, M.S.S. Adam, A. El-Denglawey, M.M. Mostafa, Opt. Mater. 122, 111793 (2021). https://doi.org/10.1016/j.optmat.2021.111793

    Article  CAS  Google Scholar 

  41. K.A. Aly, A. Dahshan, Y. Saddeek, Appl. Phys. A 127, 594 (2021). https://doi.org/10.1007/s00339-021-04737-w

    Article  CAS  Google Scholar 

  42. S.S. Fouad, M.S. El-Bana, P. Sharma, V. Sharma, Appl. Phys. A: Mater. Sci. Process. 120, 137 (2015). https://doi.org/10.1007/s00339-015-9180-6

    Article  CAS  Google Scholar 

  43. M. Vlček, M. Frumar, J Non-Cryst. Solids 97–98, 1223 (1987). https://doi.org/10.1016/0022-3093(87)90292-4

    Article  Google Scholar 

  44. F.M. Peeters, JT Devreese, Phys. Rev. B 31, 4890 (1985). https://doi.org/10.1103/PhysRevB.31.4890

    Article  CAS  Google Scholar 

  45. S. Rada, A. Dehelean, E. Culea, J. Non-cryst. Solids. 357, 3070 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.04.013

    Article  CAS  Google Scholar 

  46. C. Xing, Y. Zhang, W. Yan, L. Guo, Int. J. Hydrogen Energy 31, 2018 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.003

    Article  CAS  Google Scholar 

  47. M. Askari, N. Soltani, E. Saion, W.M.M. Yunus, H. Maryam Erfani, M. Dorostkar, Superlattices Microstruct. 81, 193 (2015). https://doi.org/10.1016/j.spmi.2015.01.011

    Article  CAS  Google Scholar 

  48. TS Moss, (1985) Physica Status Solidi (B) Basic Res. 131: 415

  49. N.M. Ravindra, V.K. Srivastava, Infrared Phys. 19, 603 (1979). https://doi.org/10.1016/0020-0891(79)90081-2

    Article  CAS  Google Scholar 

  50. V.P. Gupta, NM Ravindra, Phys. Status Solidi (B) Basic. Res. 100, 715 (1980)

    Article  CAS  Google Scholar 

  51. J.A. Duffy, J. Solid State Chem. 62, 145 (1986). https://doi.org/10.1016/0022-4596(86)90225-2

    Article  CAS  Google Scholar 

  52. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1741 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Programme of Research Project Funding After Publication, grant No (44- PRFA-P- 49).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

NAMA contributed towards methodology, writing—original draft, formal analysis, resources, and supervision. KAA contributed towards methodology, formal analysis, and writing—original draft. AAI contributed towards methodology, formal analysis, resources, and revision.

Corresponding author

Correspondence to Awad A. Ibraheem.

Ethics declarations

Conflict of interest

The authors comply with the ethical requirements Conflict of Interest and Human and Animal Rights and Informed Consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaif, N.A.M., Aly, K.A. & Ibraheem, A.A. An estimation of absorption parameters via optical characterization and theoretical analysis of (Ge1S2)100−X(As2Te3)X chalcogenides for Ir applications. J Mater Sci: Mater Electron 35, 694 (2024). https://doi.org/10.1007/s10854-024-12406-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12406-w

Navigation