Skip to main content
Log in

Phase formation and superconducting properties of (Tl,M)(Sr, Ba)Ca3Cu4Oz compounds with M = Ca, Mg, and Cu

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline samples of (Tl1−xMx)SrBaCa3Cu4Oz ((Tl, M)-1234), where M = Ca, Mg and Cu, were prepared by using a solid state reaction method to find the environmentally friendly element that promotes the formation of the 1234 phase. X-ray diffraction data showed that Ca substitution was very effective in forming the 1234 phase at normal pressure, compared to either Mg or Cu substitution. Nearly single-phase samples were obtained for the nominal compositions of (Tl1−xCax)SrBaCa3Cu4Oz (0.3 ≤ x ≤ 0.5) and (Tl0.7Ca0.3)(Sr2−yBay)Ca3Cu4Oz (1.0 ≤ y ≤ 1.25). The (Tl0.7Ca0.3)(Sr2−yBay)Ca3Cu4Oz (1.0 ≤ y ≤ 1.25) samples were found to have a relatively homogeneous microstructure by scanning electron micrography. Bulk superconductivity with Tc of 102 K was observed in the (Tl0.7Ca0.3)SrBaCa3Cu4Oz sample. The experimental results suggest that Ca can be a very useful element in the charge reservoir layer to form a single-phase Tl-1234-type compound with appropriate substitution of Ba into the Sr sites in the bridging layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available upon reasonable request.

References

  1. Z.Z. Sheng, A.M. Hermann, Nature. 332, 55 (1988)

    Article  CAS  Google Scholar 

  2. Z.Z. Sheng, A.M. Hermann, Nature. 332, 138 (1988)

    Article  CAS  Google Scholar 

  3. S.S. Parkin, V.Y. Lee, A.I. Nazzal, R. Savoy, R. Beyers, S.J. La Placa, Phys. Rev. Lett. 61, 750 (1988)

    Article  CAS  PubMed  Google Scholar 

  4. A.W. Sleight, Science. 242, 1519 (1988)

    Article  CAS  PubMed  Google Scholar 

  5. R. Sugise, H. Ihara, Jpn J. Appl. Phys. 28, 334 (1989)

    Article  CAS  Google Scholar 

  6. D. Jung, M.-H. Whang, N. Herron, C.C. Toradi, Phys. C 160, 381 (1989)

    Article  CAS  Google Scholar 

  7. M. Jergel, A.C. Gallardo, C.F. Guajardo, V. Strbik, Supercond Sci. Technol. 9, 427 (1996)

    Article  CAS  Google Scholar 

  8. S. Adachi, T. Shibata, T. Tatsuki, T. Tamura, K. Tanabe, S. Fujihara, T. Kimura, Phys. C 324, 15 (1999)

    Article  CAS  Google Scholar 

  9. C.W. Chu, L.Z. Deng, B. Lv, Phys. C 514, 290 (2015)

    Article  CAS  Google Scholar 

  10. J. Nur-Akasyah, A.B.P. Ilhamsyah, R. Abd-Shukor, Ceram. Int. 46, 18413 (2020)

    Article  CAS  Google Scholar 

  11. J. Nur-Akasyah, M.G. Ranjbar, R. Abd-Shukor, Ceram. Int. 47, 31920 (2021)

    Article  CAS  Google Scholar 

  12. A. Khalaf, A. Kamar, R. Awad, M. Matar, J. Low Temp. Phys. 210, 166 (2023)

    Article  CAS  Google Scholar 

  13. A. Kanwal, N.A. Khan, J. Supercond Nov Magn. 36, 43 (2023)

    Article  CAS  Google Scholar 

  14. A. Iyo, A. Aizawa, Y. Tanaka, M. Tokumoto, K. Tokiwa, T. Watanabe, H. Ihara, Phys. C 357–360, 324 (2001)

    Article  Google Scholar 

  15. N.A. Khan, A.A. Khurram, A. Javed, Phys. C 422, 9 (2005)

    Article  CAS  Google Scholar 

  16. M.U. Muzaffar, S.H. Safeer, N.A. Khan, A.A. Khurram, Mater. Chem. Phys. 181, 384 (2016)

    Article  Google Scholar 

  17. H.K. Lee, J. Supercond Nov Magn. 23, 539 (2010)

    Article  CAS  Google Scholar 

  18. H.K. Lee, J. Supercond Nov Magn. 24, 2183 (2011)

    Article  CAS  Google Scholar 

  19. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  20. P. Badica, A. Iyo, A. Crisan, H. Ihara, Supercond Sci. Technol. 15, 975 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R111A3074529). The corresponding author (H. K. Lee) expresses his thanks to the Central Laboratory of Kangwon National University for help with XRD, SEM, and EDX measurements and to the PNU Center for its help with SQUID measurements.

Funding

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R111A3074529).

Author information

Authors and Affiliations

Authors

Contributions

conceptualization, investigation, writing—original draft [Ho Keun Lee]; data collection [Sangmin Park]; review—editing [Ji Won Seo]; review and editing [Roslan Abd-Shukor]. All authors have approved the submitted version of the manuscript.

Corresponding author

Correspondence to Ho Keun Lee.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.K., Park, S., Seo, J.W. et al. Phase formation and superconducting properties of (Tl,M)(Sr, Ba)Ca3Cu4Oz compounds with M = Ca, Mg, and Cu. J Mater Sci: Mater Electron 35, 609 (2024). https://doi.org/10.1007/s10854-024-12390-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12390-1

Navigation