Skip to main content
Log in

Effects of rare earth dopants on the EO properties and domain configurations in PMN-PT transparent ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To comprehend the relationship between the dopants, structure, and properties of EO materials, transparent ceramics of Pb(Mg1/3Nb2/3)O3-PbTiO3 doped with rare earth (RE) ions (Er3+, Eu3+, La3+, and Sm3+) were prepared via pressure-free sintering. The transmittance of completely dense and pore-free La-doped PMN-PT ceramics is significantly better than that of the other RE-doped PMN-PT. The optimal composition of 2-mol% La-doped 0.75PMN-0.25PT has the largest electro-optical (EO) coefficient of 42.1 × 10−16 m2·V−2 and highest transmittance of 69% in the near-infrared band, which exceeds the performance of the vast majority of PMN-PT ceramics reported in the past. As the dopants vary among Er3+, Eu3+, La3+, and Sm3+, the polar domain distribution undergoes a disorder–order–disorder transformation. The study investigated the effects of various dopants on the microstructure, transmittance, EO properties, domain structure, and polarization behavior of PMN-PT ceramics. On the macroscopic polarization scale, the exceptional EO performance observed in the La-doped PMN-PT ceramics is due to the presence of an ordered lamellar polar nanodomain structure, which facilitates easier and faster polarization switching. On the atomic-level scale in relation to the dopants, the largest ionic radii and tolerance factor with moderate electronegativity for La-doped case is believed to be favorable for the highest EO effect. These results suggest that a defect-engineered well-ordered distribution of polar nanoregions could enhance the EO effect. Overall, our research provides valuable insights for the design of high-performance EO materials based on domain configuration and doping engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  2. G.H. Haertling, PLZT electrooptic materials and applications—a review. Ferroelectrics 75, 25–55 (1987)

    Article  CAS  Google Scholar 

  3. H. Jiang, Y.K. Zou, Q. Chen, K.K. Li, R. Zhang, Y. Wang, H. Ming, Z.Q. Zheng,  Transparent electro-optic ceramics and devices. Proc. SPIE.  5644, 380–394 (2005)

    Article  CAS  Google Scholar 

  4. J. Ji, S.L. Zheng, X.F. Jin, Optical variable gain tilt filter with temperature compensation. Microw. Opt. Techn Lett. 52, 1906–1909 (2010)

    Article  Google Scholar 

  5. Q. Ye, L. Qiao, J.L. Gan, Fiber sagnac π-shifted interferometer for a polarization-independent PMNT high-speed electro-optic switch. Opt. Lett. 35, 4187–4189 (2010)

    Article  PubMed  Google Scholar 

  6. X.J. Zhang, Q. Ye, R.H. Qu, High-power electro-optic switch technology based on novel transparent ceramic. Chin. Phys. B 25, 034202 (2016)

    Article  Google Scholar 

  7. Q.S. Chen, H. Jiang, Y.K. Zou, Fast, widely tunable electro-optic Fabry–Perot filter. In: Proceedings of the Quantum Electronics and Laser Science Conference 2005, Baltimore, USA. JTuC66 (2005)

  8. D. Janner, D. Tulli, M. García-Granda, Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photonics Rev. 3, 301–313 (2009)

    Article  CAS  Google Scholar 

  9. K.Y. Zou, R. Zhang, C.M. Chen, The field induced scattering in PLZT electro-optic materials. In Conference on Lasers and Electro-Optics. CWA21 (2003)

  10. F.A.L. Badillo, J.A. Eiras, F.P. Milton, Preparation and microstructural, structural, optical and electro-optical properties of La doped PMN-PT transparent ceramics. Opt. Photonics J. 2, 157–162 (2012)

    Article  Google Scholar 

  11. M. Shopa, Y. Shopa, E. Kostenyukova, Optical activity and electro-optic effect of L-arginine doped KDP single crystals. Opt. Laser Technol. 119, 105655 (2019)

    Article  CAS  Google Scholar 

  12. W. Ruan, G.R. Li, J.T. Zeng, Large electro-optic effect in La-doped 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 transparent ceramic by two-stage sintering. J. Am. Ceram. Soc. 93, 2128–2131 (2010)

    Article  CAS  Google Scholar 

  13. F.A. Londono, J.A. Eiras, D. Garcia, New transparent ferroelectric ceramics with high electro-optical coefficients: PLMN–PT. Ceramica. 57, 404–408 (2011)

    CAS  Google Scholar 

  14. S.Y. Si, C.J. Zhang, X.H. Li, Microstructure analysis on the high transparent 0.88PMN-0.12PT ferroelectric ceramics prepared by pressureless sintering. J. Chin. Electr. Mic Soc. 33, 495–498 (2014)

    CAS  Google Scholar 

  15. W.L. Ji, X.Y. He, X. Zeng, Effects of PMN/PT ratio on optical and electro-optic properties of PLMNT transparent ceramics. Ceram. Int. 41, 10387–10393 (2015)

    Article  CAS  Google Scholar 

  16. I. Fujii, S. Nakashima, T. Wada, Fabrication and electro-optic properties of 0.9Pb[(mg,zn)1/3Nb2/3]O3–0.1PbTiO3 transparent ceramics by a conventional sintering technique. Jpn J. Appl. Phys. 56, 10PC04 (2017)

    Article  Google Scholar 

  17. Z. Fang, X.D. Jiang, X. Tian, Ultratransparent PMN-PT electro-optic ceramics and its application in optical communication. Adv. Opt. Mater. 9, 2002139 (2021)

    Article  CAS  Google Scholar 

  18. S.L. Swartz, T.R. Shrout, Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 1245–1250 (1982)

    Article  CAS  Google Scholar 

  19. S. Zhou, D.B. Lin, Y.M. Su, Enhanced dielectric, ferroelectric, and optical properties in rare earth elements doped PMN–PT thin films. J. Adv. Ceram. 10, 98–107 (2021)

    Article  CAS  Google Scholar 

  20. F.J. Zheng, X. Tian, Z. Fang, Sm-doped PIN–PMN–PT transparent ceramics with high curie temperature, good piezoelectricity, and excellent electro-optical properties. ACS Appl. Mater. Interfaces 15, 7053–7062 (2023)

    Article  CAS  PubMed  Google Scholar 

  21. W. Kang, S.L. Zheng, X.M. Zhang, Quadratic electro-optic properties of pb(Mg1/3Nb2/3)O3–PbTiO3 transparent ceramics under both DC and AC bias. Appl. Opt. 51, 2870–2876 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. M.R. Winter, S.M. Pilgrim, M. Lejeune, Study on the effects of lanthanum doping on the microstructure and dielectric properties of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3. J. Am. Ceram. Soc. 84, 314–320 (2001)

    Article  CAS  Google Scholar 

  23. Z.Z. Song, Y.C. Zhang, C.J. Lu, Fabrication and ferroelectric/dielectric properties of La-doped PMN–PT ceramics with high optical transmittance. Ceram. Int. 43, 3720–3725 (2017)

    Article  CAS  Google Scholar 

  24. F. Li, M.J. Cabral, B. Xu, Giant piezoelectricity of Sm-doped pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Science. 364, 264–268 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. C. Luo, T. Karaki, Z.K. Wang, High piezoelectricity after field cooling AC poling in temperature stable ternary single crystals manufactured by continuous-feeding Bridgman method. J. Adv. Ceram. 11, 57–65 (2022)

    Article  CAS  Google Scholar 

  26. M. Hu, Z. Chang, N. Nie, Z. Wan, W. Dong, Q.Y. Fu, La-doped PMN–PT transparent ceramics with ultra-high electro-optic effect and its application in optical devices. J. Adv. Ceram. 12(7), 1441–1453 (2023)

    Article  CAS  Google Scholar 

  27. F. Chu, I.M. Reaney, N. Setter, Spontaneous (zero-field) relaxor-to-ferroelectric-phase transition in disordered pb(Sc1/2Nb1/2)O3. J. Appl. Phys. 77, 1671–1676 (1995)

    Article  CAS  Google Scholar 

  28. H.X. Wang, H.Q. Xu, H.S. Luo, Dielectric anomalies of the relaxor-based 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 single crystals. Appl. Phys. Lett. 87, 012904 (2005)

    Article  Google Scholar 

  29. W. Ruan, G.R. Li, J.T. Zeng, Origin of the giant electro-optic kerr effect in La-doped 75PMN–25PT transparent ceramics. J. Appl. Phys. 110, 074109 (2011)

    Article  Google Scholar 

  30. G.Y. Xu, Z. Zhong, Y. Bing, Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Z.W. Xu, X. Zeng, Z.D. Cao, Effects of barium substitution on the optical and electrical properties of PLZT transparent electro-optical ceramics. Ceram. Int. 45, 17890–17897 (2019)

    Article  Google Scholar 

  32. C. Li, B. Xu, D. Lin, Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics. Phys. Rev. B 101(14), 140102 (2020)

    Article  CAS  Google Scholar 

  33. Y. Liu, Q. Li, L. Qiao, Achieving giant piezoelectricity and high property uniformity simultaneously in a relaxor ferroelectric crystal through rare-earth element doping. Adv. Sci. 9(35), 2204631 (2022)

    Article  CAS  Google Scholar 

  34. P. Yan, Y. Qin, Z. Xu, Highly transparent Eu-doped 0.72 PMN-0.28 PT ceramics with excellent piezoelectricity. ACS Appl. Mater. Interfaces. 13(45), 54210–54216 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. N. Zhong, P. Xiang, D. Sun, Effect of rare earth additives on the microstructure and dielectric properties of 0.67 pb(Mg1/3Nb2/3)O3–0.33PbTiO3 ceramics. Mater. Sci. Eng. B 116(2), 140–145 (2005)

    Article  Google Scholar 

  36. W. Long, F. Guo, P. Fang, Temperature-dependent structure and electromechanical properties of Er doped PMN-PT single crystal grown by modified Bridgman technique. J. Alloy Compd. 902, 163858 (2022)

    Article  CAS  Google Scholar 

  37. N. Luo, S. Zhang, Q. Li, New Pb(Mg1/3Nb2/3)O3–Pb(In1/2Nb1/2)O3–PbZrO3–PbTiO3 quaternary ceramics: morphotropic phase boundary design and electrical properties. ACS Appl. Mater. Interfaces. 8(24), 15506–15517 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. W.C. Lee, C.Y. Huang, L.K. Tsao, Y.C. Wu, Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics. J. Eur. Ceram. Soc. 29, 1443–1448 (2009)

    Article  CAS  Google Scholar 

  39. H. Zhang, N. Li, K. Li, D. Xue, Structural stability and formability of ABO3-type perovskite compounds. Acta Crystallogr. Sect. B: Struct. Sci. 63, 812–818 (2007)

    Article  CAS  Google Scholar 

  40. X. Chen, S. Chen, A. Bruner, Effects of dopants on the microstructure and phase-purity control in PMN-PT ceramics. Ceram. Int. 44(15), 17909–17913 (2018)

    Article  CAS  Google Scholar 

  41. X. Jiang, F. Zheng, X. Tian, Investigation on the fabrication and properties of Ce-doped PMN–PT translucent piezoelectric ceramics. J. Mater. Sci. -Mater Electron. 33, 468–478 (2022)

    Article  CAS  Google Scholar 

  42. K. Li, E. Sun, Y. Zhang, High piezoelectricity of Eu3+-doped pb(Mg1/3Nb2/3)O3–0.25PbTiO3 transparent ceramics. J. Mater. Chem. C 9(7), 2426–2436 (2021)

    Article  CAS  Google Scholar 

  43. Z. Fang, X. Tian, F. Zheng, Enhanced piezoelectric properties of Sm3+-modified PMN-PT ceramics and their application in energy harvesting. Ceram. Int. 48(6), 7550–7556 (2022)

    Article  CAS  Google Scholar 

  44. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  45. V. Westphal, W. Kleemann, M.D. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the relaxor ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992)

    Article  CAS  PubMed  Google Scholar 

  46. Y. Zhang, X.J. Xu, Yttrium barium copper oxide superconducting transition temperature modeling through gaussian process regression. Comput. Mater. Sci. 179, 109583 (2020)

    Article  CAS  Google Scholar 

  47. Y. Zhang, X.J. Xu, Machine learning properties of electrolyte additives: a focus on redox potentials. Ind. Eng. Chem. Res. 60(1), 343–354 (2020)

    Article  Google Scholar 

  48. Y. Zhang, X.J. Xu, Machine learning lattice constants for cubic perovskite A22+BB′O6 compounds. Cryst. Eng. Comm. 22(38), 6385–6397 (2020)

    Article  CAS  Google Scholar 

  49. Y. Zhang, X.J. Xu, Predicting the superconducting transition temperature and relative resistance ratio in YBa2Cu3O7 films. Phys. C 592, 1353998 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Analytical and Testing Center, Huazhong University of Science and Technology (HUST) for providing the SEM, PFM, and XRD measurements.

Funding

The authors have received research support from the National Natural Science Foundation of China (Grant No. 61971459, 52202134), the Fund from Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20190809095009521), and the Innovation Team Program of Hubei Province, China (Grant No. 2019CFA004).

Author information

Authors and Affiliations

Authors

Contributions

Methodology, preparation, investigation, analysis, and writing of the original draft—Ming Hu. Resources and formal analysis—Yao Wu. Writing, reviewing, and editing of the manuscript—Long Chen. Conceptualization and revision of the manuscript—Wen Dong. Funding acquisition and supervision of experiments—Qiuyun Fu.

Corresponding authors

Correspondence to Wen Dong or Qiuyun Fu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Wu, Y., Chen, L. et al. Effects of rare earth dopants on the EO properties and domain configurations in PMN-PT transparent ceramics. J Mater Sci: Mater Electron 35, 656 (2024). https://doi.org/10.1007/s10854-024-12372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12372-3

Navigation