Skip to main content
Log in

Microwave-assisted synthesis of gadolinium/cerium oxide nanocomposite for high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the nanocomposite of gadolinium/cerium oxide was synthesized via a simple and quick microwave-assisted method for supercapacitor application. The different percentages of gadolinium (Gd) were added to cerium oxide (CeO2) to study the effect of the addition of Gd on the electrochemical performance of the CeO2. The crystallographic and morphological study were conducted through different characterization techniques. The electrochemical performance of these formed nanocomposites was tested using cyclic voltammetry and galvanostatic charge–discharge techniques and a maximum specific capacitance of 396 Fg−1 was obtained for a 20%-mixed Gd sample at 1 Ag−1 current density. Further asymmetric supercapacitor device was fabricated 20-Gd/CeO2/C//AC/C using PVA/KOH gel electrolyte which demonstrated an energy density of 23 Whkg−1 at a power density of 1379 Wkg−1. The cyclic performance was measured for fabricated devices and was found that 91% capacitance retention after 2000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

References

  1. I. Shaheen, I. Hussain, T. Zahra et al., Recent advancements in metal oxides for energy storage materials: design, classification, and electrodes configuration of supercapacitor. J. Energy Storage. 72, 108719 (2023). https://doi.org/10.1016/j.est.2023.108719

    Article  Google Scholar 

  2. P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for Electrochemical supercapacitors: overview. Electrochem. Energ. Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z

    Article  CAS  Google Scholar 

  3. T. Ramachandran, S.S. Sana, K.D. Kumar et al., Asymmetric supercapacitors: unlocking the energy storage revolution. J. Energy Storage. 73, 109096 (2023). https://doi.org/10.1016/j.est.2023.109096

    Article  Google Scholar 

  4. S. Nayak, A.A. Kittur, S. Nayak, B. Murgunde, Binderless nano marigold flower like structure of nickel sulfide electrode for sustainable supercapacitor energy storage applications. J. Energy Storage. 62, 106963 (2023). https://doi.org/10.1016/j.est.2023.106963

    Article  Google Scholar 

  5. P.E. Lokhande, A. Pakdel, H.M. Pathan et al., Prospects of MXenes in energy storage applications. Chemosphere. 297, 134225 (2022). https://doi.org/10.1016/j.chemosphere.2022.134225

    Article  CAS  PubMed  Google Scholar 

  6. A. Khan, R.R. Kumar, J. Cong et al., CVD Graphene on Textured Silicon: an emerging technologically versatile heterostructure for Energy and Detection Applications. Adv. Mater. Inter. 9, 2100977 (2022). https://doi.org/10.1002/admi.202100977

    Article  CAS  Google Scholar 

  7. C. Jagtap, V. Kadam, B. Kamble et al., Synergistic growth of cobalt hydroxide on reduced graphene oxide/nickel foam for supercapacitor application. J. Energy Storage. 83, 110666 (2024). https://doi.org/10.1016/j.est.2024.110666

    Article  Google Scholar 

  8. P.E. Lokhande, U.S. Chavan, S. Bhosale et al., New-Generation Materials for Flexible Supercapacitors, in Flexible Supercapacitor Nanoarchitectonics, 1st edn., ed. by M.I. Inamuddin, Ahamed, R. Boddula, T. Altalhi et al. (Wiley, 2021), pp.277–313

    Chapter  Google Scholar 

  9. F. Ahmad, M. Zahid, H. Jamil et al., Advances in graphene-based electrode materials for high-performance supercapacitors: a review. J. Energy Storage. 72, 108731 (2023). https://doi.org/10.1016/j.est.2023.108731

    Article  Google Scholar 

  10. M. Sharma, R. Adalati, R. Rani et al., Mn Incorporated CeO 2 Lattice endorsement of Electrochemical performance in symmetric Supercapacitor device. Energy Tech. 11, 2300321 (2023). https://doi.org/10.1002/ente.202300321

    Article  CAS  Google Scholar 

  11. B. Tawiah, R.K. Seidu, B.K. Asinyo, B. Fei, A review of fiber-based supercapacitors and sensors for energy-autonomous systems. J. Power Sources. 595, 234069 (2024). https://doi.org/10.1016/j.jpowsour.2024.234069

    Article  CAS  Google Scholar 

  12. B.B. Sahoo, V.S. Pandey, A.S. Dogonchi et al., A state-of-art review on 2D material-boosted metal oxide nanoparticle electrodes: Supercapacitor applications. J. Energy Storage. 65, 107335 (2023). https://doi.org/10.1016/j.est.2023.107335

    Article  Google Scholar 

  13. P.E. Lokhande, U.S. Chavan, Nanoflower-like Ni(OH)2 synthesis with chemical bath deposition method for high performance electrochemical applications. Mater. Lett. 218, 225–228 (2018). https://doi.org/10.1016/j.matlet.2018.02.012

    Article  CAS  Google Scholar 

  14. P.E. Lokhande, U.S. Chavan, All-solid-state asymmetric Supercapacitor based on Ni–Co layered double hydroxide and rGO nanocomposite deposited on Ni Foam. J. Electrochem. Energy Convers. Storage. 17, 031013 (2020). https://doi.org/10.1115/1.4045977

    Article  CAS  Google Scholar 

  15. Q. Liu, Y. Yang, Y. Ni et al., A general approach to the fabrication of Sn-doped TiO2 nanotube arrays with titanium vacancies for supercapacitors. Appl. Surf. Sci. 570, 151175 (2021). https://doi.org/10.1016/j.apsusc.2021.151175

    Article  CAS  Google Scholar 

  16. Y. Yu, C. Li, H. Wang et al., High-specific-capacitance electrolytic capacitors based on anodic TiO2 nanotube arrays. Electrochim. Acta. 429, 140974 (2022). https://doi.org/10.1016/j.electacta.2022.140974

    Article  CAS  Google Scholar 

  17. S. Ahmed, A. Ansari, M.A. Siddiqui et al., Electrochemical and optical-based systems for SARS-COV-2 and various pathogens assessment. Adv. Nat. Sci: Nanosci. Nanotechnol. 14, 033001 (2023). https://doi.org/10.1088/2043-6262/aceda9

    Article  Google Scholar 

  18. A. Khan, C. Jacob, Random and self-aligned growth of 3C-SiC nanorods via VLS–VS mechanism on the same silicon substrate. Mater. Lett. 135, 103–106 (2014). https://doi.org/10.1016/j.matlet.2014.07.129

    Article  CAS  Google Scholar 

  19. S. Ahmed, A. Ansari, A.S. Haidyrah et al., Hierarchical molecularly imprinted inverse Opal-based platforms for highly selective and sensitive determination of histamine. ACS Appl. Polym. Mater. 4, 2783–2793 (2022). https://doi.org/10.1021/acsapm.2c00072

    Article  CAS  Google Scholar 

  20. S.V.P. Vattikuti, C.T. Hoang Ngoc, H. Nguyen et al., Carbon Nitride Coupled Co3O4: a pyrolysis-based Approach for High-Performance Hybrid Energy Storage. J. Phys. Chem. Lett. 14, 9412–9423 (2023). https://doi.org/10.1021/acs.jpclett.3c02030

    Article  CAS  PubMed  Google Scholar 

  21. M.C. Sekhar, N.S. Kumar, M. Asif et al., Enhancing Electrochemical performance with g-C3N4/CeO2 Binary Electrode Material. Molecules. 28, 2489 (2023). https://doi.org/10.3390/molecules28062489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Manohar, S.V.P. Vattikuti, P. Manivasagan et al., Structural, BET, ESR, magnetic, electrochemical and cytotoxicity study of CeO2/NiFe2O4 nanocomposites. J. Alloys Compd. 968, 172275 (2023). https://doi.org/10.1016/j.jallcom.2023.172275

    Article  CAS  Google Scholar 

  23. A. Manohar, S.V.P. Vattikuti, P. Manivasagan et al., Synthesis and characterization of CeO2/MgFe2O4 nanocomposites for electrochemical study and their cytotoxicity in normal human dermal fibroblast (HDF) and human breast cancer (MDA-MB-231) cell lines. J. Alloys Compd. 968, 171932 (2023). https://doi.org/10.1016/j.jallcom.2023.171932

    Article  CAS  Google Scholar 

  24. I.D. Yadav, A. Ansari, D. Yadav, S.S. Garje, Facile synthesis of CeO2 nanoparticles and their applications in photodegradation of methylene blue and as supercapacitor electrode material. Bull. Mater. Sci. 46, 86 (2023). https://doi.org/10.1007/s12034-023-02921-7

    Article  CAS  Google Scholar 

  25. N. Maheswari, G. Muralidharan, Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors. Dalton Trans. 45, 14352–14362 (2016). https://doi.org/10.1039/C6DT03032G

    Article  CAS  PubMed  Google Scholar 

  26. A. Joseph, S. Perikkathra, T. Thomas, Novel 2D CeO2 nanoflakes as a high-performance asymmetric supercapacitor electrode material. J. Energy Storage. 68, 107757 (2023). https://doi.org/10.1016/j.est.2023.107757

    Article  Google Scholar 

  27. H. Shi, T. Hussain, R. Ahuja et al., Role of vacancies, light elements and rare-earth metals doping in CeO2. Sci. Rep. 6, 31345 (2016). https://doi.org/10.1038/srep31345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H.T. Das, E.B. T, S. Dutta et al., Recent trend of CeO2-based nanocomposites electrode in supercapacitor: a review on energy storage applications. J. Energy Storage. 50, 104643 (2022). https://doi.org/10.1016/j.est.2022.104643

    Article  Google Scholar 

  29. K. Sun, F. Ran, G. Zhao et al., High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte. RSC Adv. 6, 55225–55232 (2016). https://doi.org/10.1039/C6RA06797B

    Article  CAS  Google Scholar 

  30. S. Pawar, P.E. Lokhande, J. Kaur et al., Monochromatic Photochemical Deposition and Characterization of ZnSe Thin Films. ES Energy Environ. (2022). https://doi.org/10.30919/esee8c685

    Article  Google Scholar 

  31. S. Kurtaran, M. Kellegöz, S. Köse, Characterization of Gd doped CeO2 thin films grown by ultrasonic spray pyrolysis. Opt. Mater. 117, 111144 (2021). https://doi.org/10.1016/j.optmat.2021.111144

    Article  CAS  Google Scholar 

  32. P.S. Dighe, A.A. Bhoite, V.L. Patil et al., Development of ultrathin nanoflakes of Ni–Co LDH films by hydrothermal route for energy storage application. J. Phys. Chem. Solids. 185, 111772 (2024). https://doi.org/10.1016/j.jpcs.2023.111772

    Article  CAS  Google Scholar 

  33. N. Maheswari, G. Muralidharan, Supercapacitor Behavior of Cerium Oxide nanoparticles in Neutral Aqueous Electrolytes. Energy Fuels. 29, 8246–8253 (2015). https://doi.org/10.1021/acs.energyfuels.5b02144

    Article  CAS  Google Scholar 

  34. H. Wang, M. Liang, X. Zhang et al., Novel CeO2 nanorod framework prepared by dealloying for supercapacitors applications. Ionics. 24, 2063–2072 (2018). https://doi.org/10.1007/s11581-018-2443-4

    Article  CAS  Google Scholar 

  35. Y. Wang, C.X. Guo, J. Liu et al., CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans. 40, 6388 (2011). https://doi.org/10.1039/c1dt10397k

    Article  CAS  PubMed  Google Scholar 

  36. L.S. Aravinda, K. Udaya Bhat, B. Ramachandra Bhat, Nano CeO2/activated carbon based composite electrodes for high performance supercapacitor. Mater. Lett. 112, 158–161 (2013). https://doi.org/10.1016/j.matlet.2013.09.009

    Article  CAS  Google Scholar 

  37. S.J. Zhu, J.Q. Jia, T. Wang et al., Rational design of octahedron and nanowire CeO2 @MnO2 core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chem. Commun. 51, 14840–14843 (2015). https://doi.org/10.1039/C5CC03976B

    Article  CAS  Google Scholar 

  38. M.Z. Iqbal, M.M. Faisal, S.R. Ali, M. Alzaid, A facile approach to investigate the charge storage mechanism of MOF/PANI based supercapattery devices. Solid State Ionics. 354, 115411 (2020). https://doi.org/10.1016/j.ssi.2020.115411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSP2024R370), King Saud University, Riyadh, Saudi Arabia for the financial support. Author P. E. Lokhande received a FONDECYT postdoctoral fellowship and synthesis work carried out from this funding.

Funding

This work was supported by King Saud University (Grant No: RSP2024R370) and Nacional de Desarrollo Científico y Tecnológico (Grant No: FONDECYT#3230388).

Author information

Authors and Affiliations

Authors

Contributions

PEL contributed to data curation, editing the draft, methodology, and conceptualization, CVJ contributed to investigation and writing of the original draft, VSK contributed to data curation and formal analysis, UR contributed to formal analysis, and SFS contributed to investigation, data curation, and funding acquisition.

Corresponding author

Correspondence to P. E. Lokhande.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhande, P.E., Jagtap, C., Kadam, V. et al. Microwave-assisted synthesis of gadolinium/cerium oxide nanocomposite for high-performance supercapacitor. J Mater Sci: Mater Electron 35, 615 (2024). https://doi.org/10.1007/s10854-024-12354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12354-5

Navigation