Skip to main content
Log in

Design of non-volatile capacitive memory using axial type-II heterostructure nanowires of NiO/β-Ga2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The study presents a non-volatile memory (NVM) device created from an axial NiO-nanowire (NW)/β-Ga2O3-NW heterostructure (HS) using GLAD within the RF/DC sputtering chamber. The device performance of the axial NiO-NW/β-Ga2O3-NW HS was compared to the NiO-thin film (TF)/β-Ga2O3-TF HS device. Moreover, the axial NiO-NW/β-Ga2O3-NW HS sample superior crystallinity as compared to its 2-D HS counterpart confirming a high degree of structural alignment in case of axial HS NW. The axial NiO-NW/β-Ga2O3-NW HS device showed a high accumulation capacitance of 25 pF and a conductance of 28 × 10−6 S measured at 1 MHz frequency. Furthermore, the axial NiO-NW/β-Ga2O3-NW HS memory device displayed good characteristics including a low interface state density (\({D}_{it}\)) of 1.13 × 1011 eV−1 cm−2 and a significant memory window of 2.84 V at ± 8 V sweeping voltage as compared to the TF HS (\({D}_{it}\) of 1.42 × 1011 eV−1 cm−2 and memory window of 0.56 V at ± 8 V). Additionally, the axial NiO-NW/β-Ga2O3-NW HS memory device exhibited good endurance over 1000 programming/erasing cycles as well as reliable retention properties (memory window stays constant up to 3 × 104 s). Therefore, axial NiO-NW/β-Ga2O3-NW HS memory device, benefiting from the high-quality type-II junction emerges as a promising choice for future NVM applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be made available on reasonable request.

References

  1. P. Li, Z. Zhang, Z. Zhuang, J. Guo, Z. Fang, S.L. Fereja, W. Chen, Pd-doping-induced oxygen vacancies in one-dimensional tungsten oxide nanowires for enhanced acetone gas sensing. Anal. Chem. 93(20), 7465–7472 (2021). https://doi.org/10.1021/acs.analchem.1c00568

    Article  CAS  PubMed  Google Scholar 

  2. M. Dhananjaya, N.G. Prakash, A.L. Narayana, O.M. Hussain, Microstructural and supercapacitive properties of one-dimensional vanadium pentoxide nanowires synthesized by hydrothermal method. Appl. Phys. A 124, 1–7 (2018). https://doi.org/10.1007/s00339-017-1522-0

    Article  CAS  Google Scholar 

  3. I. Chakraborty, A. Jaiswal, A.K. Saha, S.K. Gupta, K. Roy, Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl. Phys. Rev. (2020). https://doi.org/10.1063/1.5113536

    Article  Google Scholar 

  4. Q.F. Ou, B.S. Xiong, L. Yu, J. Wen, L. Wang, Y. Tong, In-memory logic operations and neuromorphic computing in non-volatile random-access memory. Materials. 13(16), 3532 (2020). https://doi.org/10.3390/ma13163532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). doi.org/10.10 02/adma.201100984

    Article  CAS  PubMed  Google Scholar 

  6. G. Choi, H.H. Yoon, S. Jung, Y. Jeon, J.Y. Lee, W. Bahng, K. Park, Schottky barrier modulation of metal/4H-SiC junction with thin interface spacer driven by surface polarization charge on 4H-SiC substrate. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4938070

    Article  PubMed  PubMed Central  Google Scholar 

  7. F. Mo, T. Saraya, T. Hiramoto, M. Kobayashi, Reliability characteristics of metal/ferroelectric-HfO2/IGZO/metal capacitor for non-volatile memory application. Appl. Phys. Express (2020). https://doi.org/10.35848/1882-0786/ab9a92

    Article  Google Scholar 

  8. Z.B. Yan, J.M. Liu, Coexistence of high-performance resistance and capacitance memory based on multilayered metal-oxide structures. Sci. Rep. 3(1), 2482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. Sarkar, G.G. Khan, A.K. Singh, K. Mandal, High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays. J. Phys. Chem. C 117(30), 15523–15531 (2013). https://doi.org/10.1021/jp4039573

    Article  CAS  Google Scholar 

  10. P. Chen, S. Wu, P. Li, J. Zhai, B. Shen, Great enhancement of energy storage density and power density in BNBT/x BFO multilayer thin film hetero-structures. Inorg. Chem. Front. 5(9), 2300–2305 (2018). https://doi.org/10.1039/C8QI00487K

    Article  CAS  Google Scholar 

  11. Z.T. Xu, K.J. Jin, L. Gu, Y.L. Jin, C. Ge, C. Wang, H.Z. Guo, H.B. Lu, R.Q. Zhao, G.Z. Yang, Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. Small. 8(8), 1279–1284 (2012). https://doi.org/10.1002/smll.201101796

    Article  CAS  PubMed  Google Scholar 

  12. R. Lahiri, A. Mondal, Superior memory of Er-doped TiO2 nanowire MOS capacitor. IEEE Electron Device Lett. 39(12), 1856–1859 (2018).

    Article  CAS  Google Scholar 

  13. P. Chetri, J.C. Dhar, 2022, February. Capacitive memory using GLAD synthesized annealed SnO2 nanowires array as a dielectric. In 2022 IEEE VLSI Device Circuit and System (VLSI DCS) (pp. 139–142). https://doi.org/10.1109/VLSIDCS53788.2022.9811450

  14. N. Miyata, J. Nara, T. Yamasaki, K. Sumita, R. Sano, H. Nohira, 2018, December. Interface dipole modulation in HfO2/SiO2 MOS stack structures. In 2018 IEEE International Electron Devices Meeting (IEDM) (pp. 7 – 6). https://doi.org/10.1109/IEDM.2018.8614674

  15. R. Khosla, E.G. Rolseth, P. Kumar, S.S. Vadakupudhupalayam, S.K. Sharma, J. Schulze, Charge trapping analysis of metal/Al2O3/SiO2/Si, gate stack for emerging embedded memories. IEEE Trans. Device Mater. Reliab. 17(1), 80–89 (2017). https://doi.org/10.1109/TDMR.2017.2659760

    Article  CAS  Google Scholar 

  16. S.A. Lee, S.Y. Jeong, J.Y. Hwang, J.P. Kim, M.G. Ha, C.R. Cho, Dielectric characterization of metal-oxide-semiconductor capacitor using Ga2O3 dielectrics on p-Si (100). Integr. Ferroelectr. 74(1), 173–180 (2005). https://doi.org/10.1080/10584580500414192

    Article  CAS  Google Scholar 

  17. H. Wong, H. Iwai, On the scaling issues and high-K replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 83(10), 1867–1904 (2006). https://doi.org/10.1016/j.mee.2006.01.271

    Article  CAS  Google Scholar 

  18. R. Rajkumari, C. Ngangbam, N.K. Singh, Presence of capacitive memory in GLAD-synthesized WO3 nanowire. J. Mater. Sci.: Mater. Electron. 32, 3191–3200 (2021). https://doi.org/10.1007/s10854-020-05067-y

    Article  CAS  Google Scholar 

  19. J. Zhao, Y. Tian, A. Liu, L. Song, Z. Zhao, The NiO electrode materials in electrochemical capacitor: a review. Mater. Sci. Semiconduct. Process. 96, 78–90 (2019). https://doi.org/10.1016/j.mssp.2019.02.024

    Article  CAS  Google Scholar 

  20. J. Zhang, J. Shi, D.C. Qi, L. Chen, K.H. Zhang, Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. (2020). https://doi.org/10.1063/1.5142999

    Article  Google Scholar 

  21. M.C. Pedapudi, J.C. Dhar,  Improved UV photodetection based on β-Ga2O3-NiO 1D–1D heterostructure arrays. IEEE Sens. Lett. (2022). https://doi.org/10.1109/LSENS.2022.3225724

    Article  Google Scholar 

  22. Y.M. Juan, H.T. Shoou-Jinn Chang, S.H. Hsueh, W.Y. Wang, T.C. Weng, Cheng, Effects of humidity and ultraviolet characteristics on β-Ga2O3 nanowire sensor. RSC Adv. 5, 8477684781 (2015). https://doi.org/10.1039/C5RA16710

    Article  Google Scholar 

  23. M.C. Pedapudi, J.C. Dhar, A novel high performance photodetection based on axial NiO/β-Ga2O3 pn junction heterostructure nanowires array. Nanotechnology. 33(25), 255203 (2022). https://doi.org/10.1088/1361-6528/ac5b54

    Article  Google Scholar 

  24. P. Ravikumar, D. Taparia, P. Alagarsamy, Thickness-dependent thermal oxidation of Ni into NiO thin films. J. Supercond. Novel Magn. 31, 3761–3775 (2018). https://doi.org/10.1007/s10948-018-4651-6

    Article  CAS  Google Scholar 

  25. H. Miyata, K. Kuroda, Preferred alignment of mesochannels in a mesoporous silica film grown on a silicon (110) surface. J. Am. Chem. Soc. 121(33), 7618–7624 (1999). https://doi.org/10.1021/ja990758m

    Article  CAS  Google Scholar 

  26. P. Nwaokafor, K.B. Okeoma, O.K. Echendu, A.C. Ohajianya, O. Kingsley, Egbo. X-ray diffraction analysis of a class of AlMgCu Alloy using Williamson–Hall and Scherrer methods. Metallogr. Microstruct. Anal. (2021). https://doi.org/10.1007/s13632-021-00792-0

    Article  Google Scholar 

  27. J.C. Dhar, A. Mondal, N.K. Singh, P. Chinnamuthu, Low-leakage TiO2 Nanowire Dielectric MOS device using Ag Schottky Gate Contact. IEEE Trans. Nanotechnol. 12(6), 948–950 (2013). https://doi.org/10.1109/TNANO.2013.2277600

    Article  CAS  Google Scholar 

  28. S. Alagha, A. Shik, H.E. Ruda, I. Saveliev, K.L. Kavanagh, S.P. Watkins, Space-charge-limited current in nanowires. J. Appl. Phys. (2017). https://doi.org/10.1063/1.4982222

    Article  Google Scholar 

  29. M.C. Pedapudi, J.C. Dhar, A novel high performance photodetection based on axial NiO/β-Ga2O3 pn junction heterostructure nanowires array. Nanotechnology (2022). https://doi.org/10.1088/1361-6528/ac5b54

    Article  PubMed  Google Scholar 

  30. S. Panigrahy, J.C. Dhar, Non-volatile memory application of glancing angle deposition synthesized Er2O3 capped SnO2 nanostructures. Semicond. Sci. Technol. (2020). https://doi.org/10.1088/1361-6641/ab7b0b

    Article  Google Scholar 

  31. P.N. Meitei, N.K. Singh, Effect of annealing on forming-free bipolar resistive switching of Gd2O3 thin films. J. Alloys Compd. 941, 168900 (2023). doi.org/10.10 16/j.jallcom.2023.168900

    Article  CAS  Google Scholar 

  32. A. Mondal, J.C. Dhar, P. Chinnamuthu, N.K. Singh, K.K. Chattopadhyay, S.K. Das, S.C. Das, A. Bhattacharyya, Electrical properties of vertically oriented TiO2 nanowire arrays synthesized by glancing angle deposition technique. Electron. Mater. Lett. 9, 213–217 (2013). https://doi.org/10.1007/s13391-012-2136-5

    Article  CAS  Google Scholar 

  33. B. Wu, H. Yuan, Q. Xu, J.A. Steele, D. Giovanni, P. Puech, J. Fu, Y.F. Ng, N.F. Jamaludin, A. Solanki, S. Mhaisalkar, Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites.  Nat. Commun. 10, 484 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21(25–26), 2681–2702 (2009). https://doi.org/10.1002/adma.200803754

    Article  CAS  PubMed  Google Scholar 

  35. S. Nakazawa, T. Okuda, J. Suda, T. Nakamura, T. Kimoto, Interface properties of 4H-SiC and MOS structures annealed in NO. IEEE Trans. Electron. Devices. 62(2), 309–315 (2014). https://doi.org/10.1109/TED.2014.2352117

    Article  CAS  Google Scholar 

  36. Z. Zhang, Y. Zeng, C.S. Jiang, Y. Huang, M. Liao, H. Tong, M. Al-Jassim, P. Gao, C. Shou, X. Zhou, B. Yan, Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells. Sol. Energy Mater. Sol. Cells. 187, 113–122 (2018). https://doi.org/10.1016/j.solmat.2018.07.025

    Article  CAS  Google Scholar 

  37. A. Nath, B.K. Mahajan, M.B. Sarkar, Ag nanoparticles sheltered In2O3 nanowire as a capacitive MOS memory device. IEEE Trans. Nanotechnol. 19, 856–863 (2020). https://doi.org/10.1109/TNANO.2020.3035179

    Article  CAS  Google Scholar 

  38. D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, U. Schröder, Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4829064

    Article  PubMed  PubMed Central  Google Scholar 

  39. C.C. Lin, Y. Kuo, Temperature effects on nanocrystalline molybdenum oxide embedded ZrHfO high-k nonvolatile memory functions. ECS J. Solid State Sci. Technol. 2(1), Q16 (2012). https://doi.org/10.1149/2.027301jss

    Article  CAS  Google Scholar 

  40. R.K. Gupta, S. Krishnamoorthy, D.Y. Kusuma, P.S. Lee, M.P. Srinivasan, Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles. Nanoscale. 4(7), 2296–2300 (2012). https://doi.org/10.1039/C2NR12134D

    Article  CAS  PubMed  Google Scholar 

  41. C. Zhou, P. Peng, Y. Yang, T. Ren, 2011, February. Characteristics of metal-Pb (Zr 0.53 Ti 0.47) O3-TiO2-Si capacitor for nonvolatile memory applications. In 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (pp. 134–137). https://doi.org/10.1109/NEMS.2011.6017313

  42. S. Gandhi, L. Li, H.Y. Hui, P. Chakraborti, H. Sharma, P.M. Raj, C.P. Wong, R. Tummala, 2014, May. Nanowires-based high-density capacitors and thin film power sources in ultrathin 3D glass modules. In 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (pp. 1492–1497). https://doi.org/10.1109/ECTC.2014.6897491

  43. H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 8(3), 759–787 (2020). https://doi.org/10.1039/C9TC05695E

    Article  CAS  Google Scholar 

  44. W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D: Appl. Phys. (2006). https://doi.org/10.1088/0022-3727/39/21/R01

    Article  Google Scholar 

  45. D. Tsoukalas, From silicon to organic nanoparticle memory devices. Philos. Trans.Royal Soc. A: Math. Phys. Eng. Sci. (2009). https://doi.org/10.1098/rsta.2008.0280

    Article  Google Scholar 

  46. C.H. Tu, T.C. Chang, P.T. Liu, H.C. Liu, S.M. Sze, C.Y. Chang, Improved memory window for Ge nanocrystals embedded in SiON layer. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2362972

    Article  Google Scholar 

  47. K.K. Kashyap, L.H.J. Jire, P. Chinnamuthu, A perspective study on Au-nanoparticle adorned TiO2-nanowire for non-volatile memory devices. Mater. Today Commun. 33, 104469 (2022). https://doi.org/10.1016/j.mtcomm.2022.104469

    Article  CAS  Google Scholar 

  48. S. Kundu, D. Maurya, M. Clavel, Y. Zhou, N.N. Halder, M.K. Hudait, P. Banerji, S. Priya, Integration of lead-free ferroelectric on HfO2/Si (100) for high performance non-volatile memory applications. Sci. Rep. 5(1), 8494 (2015). https://doi.org/10.1038/srep08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We would like to thank the SERB project (EMR/2017/00 1863), DST Govt. of India for providing fabrication facilities, NCPRE, IIT Bombay and CSIR-NEIST JORHAT for FE-SEM. And also, NIT Nagaland for XRD facility and TEQIP-III FOR funding this research.

Author information

Authors and Affiliations

Authors

Contributions

MCP involved in writing original draft, validation, formal analysis, conceptualization. JCD involved in writing, review & editing, supervision, methodology, investigation, formal analysis, conceptualization.

Corresponding author

Correspondence to Jay Chandra Dhar.

Ethics declarations

This article does not contain any studies involving human/animals participants performed by any of the authors.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedapudi, M.C., Dhar, J.C. Design of non-volatile capacitive memory using axial type-II heterostructure nanowires of NiO/β-Ga2O3. J Mater Sci: Mater Electron 35, 571 (2024). https://doi.org/10.1007/s10854-024-12309-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12309-w

Navigation