Skip to main content
Log in

Investigation on preparation and performance of high-reliable ZnO–NiO@Cu NW flexible transparent conductive thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper nanowires (Cu NWs) are the key materials for fabricating the next generation of flexible transparent conductive thin films, but the poor stability limits their application in optoelectronic devices. In this paper, high-reliable ZnO–NiO@Cu NWs are prepared by coating ZnO–NiO shells on Cu NWs using an all-solution technique. The obtained ZnO–NiO@Cu NW flexible transparent conductive thin films show a low sheet resistance of 20.0 Ω/sq. and a high transmittance of 84.7%. Furthermore, the ZnO–NiO shells effectively enhance the stability of Cu NWs. The resistance of ZnO–NiO@Cu NWs is almost unchanged after subjected to high temperature/humidity, sulfuration, and high temperature oxidation tests. Finally, the practicality of ZnO–NiO@Cu NWs is validated through the fabrication of transparent heaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Zhang, C. Ji, Y.B. Park, L.J. Guo, Thin-metal‐Film‐Based Transparent conductors: Material Preparation, Optical Design, and device applications. Adv. Opt. Mater. 9(3), 2001298 (2021)

    Article  CAS  Google Scholar 

  2. T. Qiu, E.M. Akinoglu, B. Luo, M. Konarova, J.H. Yun, I.R. Gentle, L. Wang, Nanosphere lithography: a versatile approach to develop transparent conductive films for optoelectronic applications. Adv. Mater. 34(19), 2103842 (2022)

    Article  CAS  Google Scholar 

  3. S. Yu, X. Liu, P. Yang, L. Zhao, H. Dong, C. Wu, X. Li, J. Xiong, Highly stable silver nanowire networks with tin oxide shells for freestanding transparent conductive nanomembranes through all-solution processes. Chem. Eng. J. 446, 137481 (2022)

    Article  CAS  Google Scholar 

  4. N. Ahmad, S. Khan, M.M.N. Ansari, Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Inter. 44, 15972–15980 (2018)

    Article  CAS  Google Scholar 

  5. Z. Chen, J. Wang, H. Wu, J. Yang, Y. Wang, J. Zhang, Q. Bao, M. Wang, Z. Ma, W. Tress, Z. Tang, A transparent electrode based on solution-processed ZnO for organic optoelectronic devices. Nat. Commun. 13(1), 4387 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. U. Shankar, D. Oberoi, A. Bandyopadhyay, A review on the alternative of indium tin oxide coated glass substrate in flexible and bendable organic optoelectronic device. Polym. Adv. Technol. 33(10), 3078–3111 (2022)

    Article  CAS  Google Scholar 

  7. R.S. Datta, N. Syed, A. Zavabeti, A. Jannat, M. Mohiuddin, M. Rokunuzzaman, B.Y. Zhang, M.A. Rahman, P. Atkin, K.A. Messalea, M.B. Ghasemian, E.D. Gaspera, S. Bhattacharyya, M.S. Fuhrer, S.P. Russo, C.F. McConville, D. Esrafilzadeh, K. Kalantar-Zadeh, T. Daeneke, Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 3(1), 51–58 (2020)

    Article  CAS  Google Scholar 

  8. R. Paul, S. Arulkumar, K. Jenifer, S. Parthiban, Al-Diffused ZnO Transparent conducting Oxide Thin films for Cadmium Telluride Superstrate Solar cells: a Comprehensive Study. J. Electr. Mater. 52(1), 130–139 (2023)

    Article  CAS  Google Scholar 

  9. W. Peng, L. Li, S. Yu, P. Yang, K. Xu, High-performance indium-free flexible transparent ATO/Au/ATO tri-layer films by magnetron sputtering. Ceram. Inter. 48(1), 381–386 (2022)

    Article  CAS  Google Scholar 

  10. K. Norrman, P. Norby, E. Stamate, Preferential zinc sputtering during the growth of aluminum doped zinc oxide thin films by radio frequency magnetron sputtering. J. Mater. Chem. C 0(39), 14444–14452 (2022)

    Article  CAS  Google Scholar 

  11. F. Zeribi, A. Attaf, A. Derbali, H. Saidi, L. Benmebrouk, M.S. Aida, M. Dahnoun, R. Nouadji, H. Ezzaouia, Dependence of the physical properties of titanium dioxide (TiO2) thin films grown by sol-gel (spin-coating) process on thickness. ECS J. Solid State Sci. Technol. 11(2), 023003 (2022)

    Article  Google Scholar 

  12. N. Ahmad, S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloys Compds. 720, 502–509 (2017)

    Article  CAS  Google Scholar 

  13. H. Dai, L. Yang, S. He, < 50-µm thin crystalline silicon heterojunction solar cells with dopant-free carrier-selective contacts. Nano Energy. 64, 103930 (2019)

    Article  CAS  Google Scholar 

  14. A.S. Asundi, J.A. Raiford, S.F. Bent, Opportunities for atomic layer deposition in emerging energy technologies. ACS Energy Lett. 4(4), 908–925 (2019)

    Article  CAS  Google Scholar 

  15. Y. Ma, Z. Lu, X. Su, G. Zou, Q. Zhao, Recent progress toward commercialization of flexible Perovskite Solar cells: from materials and structures to mechanical stabilities. Adv. Energy Sustain. Res. 4(1), 2200133 (2023)

    Article  CAS  Google Scholar 

  16. S.U. Park, J.H. Koh, Low temperature rf-sputtered in and Al co-doped ZnO thin films deposited on flexible PET substrate. Ceram. Inter. 40(7), 10021–10025 (2014)

    Article  CAS  Google Scholar 

  17. J. Miao, T. Fan, Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon. 202, 495–527 (2023)

    Article  CAS  Google Scholar 

  18. P. Wang, M. Jian, C. Zhang, M. Wu, X. Ling, J. Zhang, B. Wei, L. Yang, Highly stable graphene-based flexible hybrid transparent conductive electrodes for Organic Solar cells. Adv. Mater. Interf. 9(3), 2101442 (2022)

    Article  CAS  Google Scholar 

  19. D.A. Ilatovskii, E.P. Gilshtein, O.E. Glukhova, A.G. Nasibulin, Transparent conducting films based on carbon nanotubes: rational design toward the theoretical limit. Adv. Sci. 9(24), 2201673 (2022)

    Article  CAS  Google Scholar 

  20. Q. Zhang, J.S. Nam, J. Han, S. Datta, N. Wei, E.X. Ding, A. Hussain, S. Ahmad, V. Skakalova, A.T. Khan, Y.P. Liao, M. Tavakkoli, B. Peng, K. Mustonen, D. Kim, I. Chung, S. Maruyama, H. Jiang, I. Jeon, Kauppinen, large-diameter Carbon Nanotube Transparent Conductor Overcoming performance–yield tradeoff. Adv. Funct. Mater. 32(11), 2103397 (2022)

    Article  CAS  Google Scholar 

  21. S. Zhou, X. Zeng, X. Yan, F. Xie, B.D. Fahlman, C. Wang, W. Li, High aspect ratio copper nanowires and copper nanoparticles decorated by reduced graphene oxide for flexible transparent conductive electrodes. Appl. Surf. Sci. 604, 154597 (2022)

    Article  CAS  Google Scholar 

  22. S. Huang, Y. Liu, F. Yang, Y. Wang, T. Yu, D. Ma, Metal nanowires for transparent conductive electrodes in flexible chromatic devices: a review. Environ. Chem. Lett. 20(5), 3005–3037 (2022)

    Article  CAS  Google Scholar 

  23. X. He, H. Peng, Z. Xiong, X. Nie, D. Wang, G. Wang, C. Liu, A sustainable and low-cost route to prepare magnetic particle-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes. Carbon. 198, 195–206 (2022)

    Article  CAS  Google Scholar 

  24. Y. Noh, H. Jeong, J. Park, D. Lee, Charge-assisted coating of silver nanowire transparent conductive layer and application to flexible heater. Surf. Interf. 32, 102105 (2022)

    Article  CAS  Google Scholar 

  25. N. Ullah, J. Cui, X. Ren, H. Mei, K. Xu, M. Idrees, X. Mei, Structural, optical, and electrical characterizations of silver nanowire/single-layer graphene oxide composite film. Appl. Surf. Sci. 602, 154343 (2022)

    Article  CAS  Google Scholar 

  26. N. Sharma, N.M. Nair, G. Nagasarvari, D. Ray, P. Swaminathan, A review of silver nanowire-based composites for flexible electronic applications. Flex. Print. Electron. 7(1), 014009 (2022)

    Article  Google Scholar 

  27. S.M. Song, S.M. Cho, Copper ion inks capable of screen printing and intense pulsed-light sintering on PET substrates. ACS Appl. Electr. Mater. 4(4), 1882–1890 (2022)

    Article  CAS  Google Scholar 

  28. N.A.C. Lah, Tunable functionality of pure Nano Cu-and Cu-based Oxide Flexible Conductive Thin Film with Superior Surface Modification. Surf. Interf. 38, 102819 (2023)

    Article  CAS  Google Scholar 

  29. S. Yu, J. Li, L. Zhao, B. Gong, L. Li, Folding-insensitive, flexible transparent conductive electrodes based on copper nanowires. Sol Energy Mater. Sol Cells. 231, 111323 (2021)

    Article  CAS  Google Scholar 

  30. D.R. Kumar, K. Woo, J. Moon, Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale. 7(41), 17195–17210 (2015)

    Article  Google Scholar 

  31. S. Yu, X. Liu, H. Dong, X. Wang, L. Li, Flexible high-performance SnO2/AgNWs bilayer transparent conductors for flexible transparent heater applications. Ceram. Inter. 47, 20379–20386 (2021)

    Article  CAS  Google Scholar 

  32. L. Zhao, P. Yang, S. Shi, X. Wang, S. Yu, Enhanced the thermal/chemical stability of Cu NWs with solution-grown Al2O3 nanoshell for application in ultra-flexible temperature detection sensors. Chem. Eng. J. 473, 145156 (2023)

    Article  CAS  Google Scholar 

  33. L. Zhao, J. Li, Z. Song, X. Wang, S. Yu, Self-assembled growth of SnO2 nanoshells on copper nanowires for stable and transparent conductors. ACS Appl. Nano Mater. 6(12), 10384–10393 (2023)

    Article  Google Scholar 

  34. H. Dong, C. Chang, Q. Tan, L. Zhao, P. Yang, S. Yu, Improved Stability of Copper Nanowires with solution-grown NiO shells as protective coating. ACS Appl. Nano Mater. 6(12), 10658–10667 (2023)

    Article  Google Scholar 

  35. D. Kim, J. Bang, P. Won, Y. Kim, J. Jung, J. Lee, J. Kwon, H. Lee, S. Hong, N.L. Jeon, S. Han, S.H. Ko, Biocompatible cost-effective electrophysiological monitoring with oxidation‐free Cu–Au core–Shell Nanowire. Adv. Mater. Technol. 5(12), 2000661 (2020)

    Article  CAS  Google Scholar 

  36. B. Zhang, W. Li, J. Jiu, Y. Yang, J. Jing, K. Suganuma, C.F. Li, Large-scale and galvanic replacement free synthesis of Cu@ Ag core–shell nanowires for flexible electronics. Inorg. Chem. 58(5), 3374–3381 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. Y. Fang, X. Zeng, Y. Chen, M. Ji, H. Zheng, W. Xu, D.L. Peng, Cu@ Ni core–shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films. Nanotechnology. 31(35), 355601 (2020)

    Article  CAS  PubMed  Google Scholar 

  38. N. Meng, X. Ma, C. Wang, Y. Wang, R. Yang, J. Shao, Y. Huang, Y. Xu, B. Zhang, Y. Yu, Oxide-derived core–shell Cu@ Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano. 16(6), 9095–9104 (2022)

    Article  CAS  PubMed  Google Scholar 

  39. D. Huang, Y. Zhu, B. Mao, J. Zhang, Q. Liu, X. Li, K. Song, Galvani substitution modulated self-assembly of Cu@ Pt nanowires with hierarchical microstructure for highly active hydrogen evolution. Inter J. Hydrogen Energy. 48(14), 5541–5551 (2023)

    Article  CAS  Google Scholar 

  40. Y. Zhou, L. Zhao, N. Zhang, C. Chang, Z. Song, W. An, Q. Dong, S. Yu, Self-assembled growing ultrathin Ag@ NiO core-shell nanowires for stable freestanding transparent conductive colorless polyimide nanomembranes. J. Alloys Compds. 935, 168012 (2023)

    Article  CAS  Google Scholar 

  41. D.M. Wang, S. Xu, L.L. Wu, Z.Y. Li, P. Zhu, D.L. Wang, Spin-phonon coupling in NiO nanoparticle. J. Appl. Phys. 128, 133905 (2020)

    Article  CAS  Google Scholar 

  42. X. Zhu, H. Wu, Z. Yuan, J. Kong, W. Shen, Multiphonon resonant Raman scattering in N-doped ZnO. J. Raman Spectrosc. 40(12), 2155–2161 (2009)

    Article  CAS  Google Scholar 

  43. J. Kim, D. Ouyang, H. Lu, F. Ye, Y. Guo, N. Zhao, W.C. Choy, High performance flexible transparent electrode via one-step multifunctional treatment for Ag nanonetwork composites semi‐embedded in low‐temperature‐processed substrate for highly performed organic photovoltaics. Adv. Energy Mater. 10(15), 1903919 (2020)

    Article  CAS  Google Scholar 

  44. J. Atkinson, I.A. Goldthorpe, Near-infrared properties of silver nanowire networks. Nanotechnology. 31(36), 365201 (2020)

    Article  CAS  PubMed  Google Scholar 

  45. J.A. da Silva, M.R. Meneghetti, P.A. Netz, Molecular dynamics simulations of the structural arrangement and density of alkylamine surfactants on copper surfaces: implications for anisotropic growth of copper nanowires. ACS Appl. Nano Mater. 3(6), 5343–5350 (2020)

    Article  Google Scholar 

  46. K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics. 6(12), 809–817 (2012)

    Article  CAS  Google Scholar 

  47. G. Claes, Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater. Sol Cells. 91(17), 1529–1598 (2007)

    Article  Google Scholar 

  48. T.K. Lahane, J. Agrawal, V. Singh, Optimization of polyol synthesized silver nanowires for transparent conducting electrodes application. Mater. Today Proceed. 59, 257–263 (2022)

    Article  CAS  Google Scholar 

  49. X. Jia, L. Zhao, P. Yang, W. An, Z. Wang, S. Yu, Flexible transparent conductive films of Ag/Cr2O3 core–Shell nanowires as electrodes for Electroluminescent Devices and heaters. ACS Appl. Nano Mater. 17(6), 16024–16033 (2023)

    Article  Google Scholar 

  50. S. Ding, Y. Tian, Recent progress of solution-processed Cu nanowires transparent electrodes and their applications. RSC Adv. 9(46), 26961–26980 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S. Yu, J. Li, L. Zhao, M. Wu, H. Dong, L. Li, Simultaneously enhanced performances of flexible CuNW networks by covering ATO layer for polymer solar cells. Sol Energy Mater. Sol Cells. 221, 110885 (2021)

    Article  CAS  Google Scholar 

  52. H. Zhang, S. Wang, Y. Tian, Y. Liu, J. Wen, Y. Huang, C. Hang, Z. Zheng, C. Wang, Electrodeposition fabrication of Cu@ Ni core shell nanowire network for highly stable transparent conductive films. Chem. Eng. J. 390, 124495 (2020)

    Article  CAS  Google Scholar 

  53. S. Yu, Z. Liu, L. Zhao, B. Gong, High-performance flexible transparent conductive tape based on copper nanowires. Opt. Mater. 119, 111301 (2021)

    Article  CAS  Google Scholar 

  54. A. Dutta, S. Chatterjee, A.K. Raychaudhuri, A. Moitra, T. Saha-Dasgupta, In-silico investigation of Rayleigh instability in ultra-thin copper nanowire in premelting regime. J. Appl. Phys. 115, 244303 (2014)

    Article  Google Scholar 

  55. G.S. Liu, M. He, T. Wang, L. Wang, Z. He, R. Zhan, L. Chen, Y. Chen, B.R. Yang, Y. Luo, Z. Chen, Optically Programmable Plateau–Rayleigh instability for high-resolution and Scalable Morphology Manipulation of Silver Nanowires for Flexible Optoelectronics. ACS Appl. Mater. Interfaces. 12, 53984–53993 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. S. Koo, J. Park, S. Koo, K. Kim, Local heat dissipation of Ag nanowire networks examined with scanning thermal microscopy. J. Phys. Chem. C 125, 6306–6312 (2021)

    Article  CAS  Google Scholar 

  57. L. Zhao, S. Yu, X. Li, M. Wu, L. Li, High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions. Sol Energy Mater. Sol Cells. 201, 110067 (2019)

    Article  CAS  Google Scholar 

  58. S. Ji, W. He, K. Wang, Y. Ran, C. Ye, Thermal response of Transparent Silver Nanowire/ PEDOT:PSS Film heaters. Small. 10, 4951–4960 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. L. Song, S. Qu, S. Yu, Ultrahigh-temperature-tolerant NiO@ Ag NW-Based transparent heater with High Stability, durability, Ultraflexibility, and Quick Thermal Response. ACS Appl. Nano Mater. 6, 12413–12424 (2023)

    Article  CAS  Google Scholar 

  60. Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei, Z. Ji, High-performance and Rapid-Response Electrical heaters based on Ultraflexible, Heat- Resistant, and mechanically strong Aramid Nanofiber/Ag Nanowire Nanocomposite Papers. ACS Nano. 13, 7578–7590 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 52175525), Science and Technology Project of Henan Province (Grant Nos. 222102230032, 232102211079), and Teaching reform project of Henan Province (Grant No. 2022JYZD-001).

Author information

Authors and Affiliations

Authors

Contributions

BT, HL, BL, YY, and HD: conceptualization, methodology, formal analysis, validation, and writing—original draft. PY: conceptualization, methodology, and formal analysis. LZ: methodology, formal analysis, and validation. BT and SY: visualization; writing—review& editing, and project administration.

Corresponding authors

Correspondence to Le Zhao or Shihui Yu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Liu, H., Liu, B. et al. Investigation on preparation and performance of high-reliable ZnO–NiO@Cu NW flexible transparent conductive thin films. J Mater Sci: Mater Electron 35, 532 (2024). https://doi.org/10.1007/s10854-024-12303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12303-2

Navigation