Skip to main content
Log in

Comparison of high-speed shear properties of low-temperature Sn-Bi/Cu and Sn-In/Cu solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To study the high-speed shear properties of low-temperature solders, we select four groups of samples of Sn–xBi (x = 22, 30 wt%) and Sn−xIn alloys (x = 18, 22 wt%) with the melting temperature ranging from 190 to 200 °C. High-speed shear test results show that the shear strength of Sn–Bi/Cu solder joints is much higher compared to Sn−In/Cu solder joints, but their displacement is much lower. Consequently, the shear energy of Sn–Bi solders is less than half of the shear energy of Sn−In solders. This variation can be attributed to various fracture modes controlled by alloying element’s characteristics. Sn−xBi/Cu solder joints containing β-Sn, intrinsic brittle Bi phase and Cu6Sn5 exhibit brittle interfacial fracture, while Sn−xIn/Cu solder joints containing single γ-InSn4 phase and Cu6(Sn, In)5 show ductile fracture (e.g., Sn−22In/Cu) and part of mixed fracture (e.g., Sn−18In/Cu). This reveals that toughness of soft γ-InSn4 phase is much better than that of microstructure containing β-Sn and intrinsic brittle Bi phases. Furthermore, for Sn–Bi solders, the quantity of brittle Bi-rich phase in the fracture surface is proportional to Bi content in alloys, leading to lower strength of Sn−30Bi/Cu solder joints. While for Sn−In solders, compared to 18In/Cu, 22In/Cu solder joints contain more Cu6(Sn, In)5 IMCs in the matrix and thicker interfacial IMCs, it still exhibits higher shear energy under high-speed shear tests. This may be attributed to the fact that increasing In content not only makes the matrix softer but also coordinates with the deformation of interfacial IMC. The study provides a guidance for the development of low-temperature solder alloys with superior toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Cheng, C.-M. Huang, M. Pecht, Microelectron. Reliab. 75, 77 (2017)

    Article  CAS  Google Scholar 

  2. T. Tekin, IEEE J. Sel. Top. Quantum Electron. 17, 704 (2011)

    Article  CAS  Google Scholar 

  3. G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, K. Nogita, Acta Mater. 83, 357 (2015)

    Article  CAS  Google Scholar 

  4. A.A. El-Daly, H. El-Hosainy, T.A. Elmosalami, W.M. Desoky, J. Alloys Compd. 653, 402 (2015)

    Article  CAS  Google Scholar 

  5. H. Fu, J. Radhakrishnan, M. Ribas, R. Aspandiar, K. Byrd, J. Chen, S. Cheng, Q. Chen, R. Coyle, S. Feng, M. Krmpotich, S. Mokler, B. Sandy-Smith, K.K. Tang, G. Wu, A. Zhang, W. Zhen, 2018 Int. Conf. Electron. Packag. IMAPS Asia Conf. ICEP-IAAC (IEEE, Japan, 2018), pp. 13–18. Mie

    Google Scholar 

  6. N. Jiang, L. Zhang, L.-L. Gao, X.-G. Song, P. He, J. Mater. Sci. Mater. Electron. 32, 22731 (2021)

    Article  CAS  Google Scholar 

  7. Z. Wang, Q.K. Zhang, Y.X. Chen, Z.L. Song, J. Mater. Sci. Mater. Electron. 30, 18524 (2019)

    Article  CAS  Google Scholar 

  8. A. Sharif, Y.C. Chan, J. Alloys Compd. 390, 67 (2005)

    Article  CAS  Google Scholar 

  9. J.R. Da Silva Leal, R.A.V. Reyes, G.L. De Gouveia, F.G. Coury, J.E. Spinelli, J. Electron. Mater. 52, 2957 (2023)

    Article  CAS  Google Scholar 

  10. S. Cai, X. Luo, J. Peng, Z. Yu, H. Zhou, N. Liu, X. Wang, Adv. Compos. Hybrid. Mater. 4, 379 (2021)

    Article  CAS  Google Scholar 

  11. C. Liu, X. Luo, J. Peng, Z. Yu, X. Wang, Electron. Compon. Mater. 7, 41 (2022). https://doi.org/10.14106/j.cnki.1001-2028.2022.0019

    Article  CAS  Google Scholar 

  12. X. Luo, J. Peng, W. Zhang, S. Wang, S. Cai, X. Wang, Mater. Sci. Eng. A 860, 144284 (2022)

    Article  CAS  Google Scholar 

  13. F. Wang, H. Chen, Y. Huang, L. Liu, Z. Zhang, J. Mater. Sci. Mater. Electron. 30, 3222 (2019)

    Article  CAS  Google Scholar 

  14. W. Qin, J. Li, Q. Zhang, S. Jiang, J. Feng, W. Yang, Y. Zhan, J. Mater. Sci. Mater. Electron. 33, 177 (2022)

    Article  CAS  Google Scholar 

  15. H.N. Fowler, A. Loaiza, D.F. Bahr, J.E. Blendell, C.A. Handwerker, J. Electron. Mater. 52, 7365 (2023)

    Article  CAS  Google Scholar 

  16. L. Shen, P. Septiwerdani, Z. Chen, Mater. Sci. Eng. A 558, 253 (2012)

    Article  CAS  Google Scholar 

  17. A. Luktuke, A.S.S. Singaravelu, A. Mannodi-Kanakkithodi, N. Chawla, Acta Mater. 249, 118853 (2023)

    Article  CAS  Google Scholar 

  18. K. Lee, K.-S. Kim, K. Suganuma, J. Mater. Res. 26, 2624 (2011)

    Article  CAS  Google Scholar 

  19. K.-O. Lee, J.W. Morris, F. Hua, J. Electron. Mater. 41, 336 (2012)

    Article  CAS  Google Scholar 

  20. T. You, Y. Kim, J. Kim, J. Lee, B. Jung, J. Moon, H. Choe, J. Electron. Mater. 38, 410 (2009)

    Article  CAS  Google Scholar 

  21. L. Shen, P. Lu, S. Wang, Z. Chen, J. Alloys Compd. 574, 98 (2013)

    Article  CAS  Google Scholar 

  22. X. Chen, J. Zhou, F. Xue, Y. Yao, Mater. Sci. Eng. A 662, 251 (2016)

    Article  CAS  Google Scholar 

  23. H. Okamoto, In-Sn (Indium-Tin), Binary Alloy Phase Diagrams, 2nd EditionASM International, (1990), pp. 2295–2296

  24. T. El-ASHRAM, J. Mater. Sci. Mater. Electron. 16, 501 (2005)

    Article  CAS  Google Scholar 

  25. M. Kamal, T. El-Ashram, Mater. Sci. Eng. A 456, 1 (2007)

    Article  Google Scholar 

  26. S. Su, S. Hamasha, K. Hamasha, IEEE Trans. Compon. Packag Manuf. Technol. 9, 147 (2019)

    Google Scholar 

  27. H. Tsukamoto, T. Nishimura, S. Suenaga, K. Nogita, Mater. Sci. Eng. B 171, 162 (2010)

    Article  CAS  Google Scholar 

  28. S. Tian, S. Li, J. Zhou, F. Xue, J. Alloys Compd. 742, 835 (2018)

    Article  CAS  Google Scholar 

  29. Y. Du, Y. Qiao, X. Ren, Y. Lai, N. Zhao, Electronics. 12, 1899 (2023)

    Article  CAS  Google Scholar 

  30. F. Tian, C.-F. Li, M. Zhou, Z.-Q. Liu, J. Alloys Compd. 740, 500 (2018)

    Article  CAS  Google Scholar 

  31. Y. Zuo, C. Zhao, A. Robador, M. Wickham, S.H. Mannan, Acta Mater. 236, 118135 (2022)

    Article  CAS  Google Scholar 

  32. L. Yang, L. Zhu, Y. Zhang, S. Zhou, G. Wang, S. Shen, X. Shi, Mater. Charact. 148, 280 (2019)

    Article  CAS  Google Scholar 

  33. X. Li, F. Li, F. Guo, Y. Shi, J. Electron. Mater. 40, 51 (2011)

    Article  Google Scholar 

  34. C.Y. Tan, M.A.A.M. Salleh, X.F. Tan, H. Yasuda, N. Saud, M.I.I. Ramli, K. Nogita, Mater. Today Commun. 31, 103221 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express our gratitude to all those who helped us during the experiment and writing of this thesis. We thank Qin Li and Mingfang Ba from Yunnan Tin Material Company Limited for helping to do the DSC and SEM test experiments. We also acknowledge the help of Jiaqi Yan from Jiangsu University of Science and Technology in the low-speed shear test of solder joint.

Funding

The authors gratefully acknowledge the supports from The Yunnan Fundamental Research Projects (Grant No. 202301BC070001-001) funded by the Yunnan Provincial Department of Science and Technology and Yunnan Tin Group (Holding) Co. Ltd.

Author information

Authors and Affiliations

Authors

Contributions

QW: Experiment, original draft, data processing and analysis, and Writing—original draft. SC: Original draft, data processing, and Writing—review. SY: SEM characterization. YY: Writing—review and discussion. YW: Writing—review and discussion. JP: Writing—review and discussion. JW: Experiment, Writing—review & editing, and discussion. XW: Conception, Writing—review & editing, and discussion.

Corresponding authors

Correspondence to Jiajun Wang or Xiaojing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Experiments in this paper do not involve in any vivo testing on animal subjects, human subjects, or human tissue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Cai, S., Yang, S. et al. Comparison of high-speed shear properties of low-temperature Sn-Bi/Cu and Sn-In/Cu solder joints. J Mater Sci: Mater Electron 35, 576 (2024). https://doi.org/10.1007/s10854-024-12302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12302-3

Navigation