Skip to main content
Log in

Edge-on orientation of thermally evaporated metal phthalocyanines thin films for humidity sensing application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermally evaporated metal phthalocyanines (MPcs) were successfully fabricated for humidity-sensing applications. Comparative molecular analysis of three different MPcs sensing layers, namely MnPc, VOPc, and VTTBNc, using the powerful tool of grazing-incidence wide-angle and small-angle X-ray scattering (GIWAXS/GISAXS), were made to find the correlation between molecule orientation of the sensing layers and their humidity sensing performances. In this study, planar-configurated capacitive Al/MnPc/Al humidity sensor produced the highest sensitivity (17.74 nF/%RH) relative to Al/VTTBNc/Al (11.50 nF/%RH) and Al/VOPc/Al (11.20 nF/%RH) due to its crystallographic orientation being more vertical than the VTTBNc and VOPc counterparts, as confirmed by GIWAXS and GISAXS analysis. Similarly, the MnPc-based sensor produced the fastest response and recovery time of 3 s and 2 s, respectively. Meanwhile, VTTBNc yielded the smallest hysteresis gap of 0.29%. The quantitative and qualitative information, such as crystal coherence length, grain size, and lattice spacing obtained from the GIWAXS and GISAXS, have been studied to explain the humidity sensors’ sensitivity, hysteresis, and transient response. The crystallographic orientation of the active sensing layer significantly influences the humidity sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. A. Kumar, H. Kim, G.P. Hancke, IEEE Sens. J. 13, 1329 (2012)

    Article  Google Scholar 

  2. L. Lan, X. Le, H. Dong, J. Xie, Y. Ying, J. Ping, Biosens. Bioelectron. 165, 112360 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. W. Jeong, J. Song, J. Bae, K.R. Nandanapalli, S. Lee, ACS Appl. Mater. Interfaces. 11, 44758 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. L. Ma, R. Wu, A. Patil et al., Adv. Funct. Mater. 29, 1904549 (2019)

    Article  CAS  Google Scholar 

  5. Z. Duan, Q. Zhao, S. Wang et al., Sens. Actuators B 317, 128204 (2020)

    Article  CAS  Google Scholar 

  6. Z. Duan, Y. Jiang, M. Yan et al., ACS Appl. Mater. Interfaces. 11, 21840 (2019). https://doi.org/10.1021/acsami.9b05709

    Article  CAS  PubMed  Google Scholar 

  7. L. Ascherl, E.W. Evans, M. Hennemann et al., Nat. Commun. 9, 3802 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. V. Montes-Garcia, P. Samori, Adv. Mater. (2023). https://doi.org/10.1002/adma.202208766

    Article  PubMed  Google Scholar 

  9. S. Park, Z. Zhang, H. Qi et al., ACS Mater. Lett. 4, 1146 (2022)

    Article  CAS  Google Scholar 

  10. R.R. Cranston, B.H. Lessard, RSC Adv. 11, 21716 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N.A. Roslan, A.A. Bakar, T.M. Bawazeer et al., Sens. Actuators B 279, 148 (2019)

    Article  CAS  Google Scholar 

  12. A. Jana, K. Kumari, A. Dey et al., Sens. Actuators A: Phys. 299, 111574 (2019). https://doi.org/10.1016/j.sna.2019.111574

    Article  CAS  Google Scholar 

  13. N.A.M. Safian, A. Anuar, A.-Z. Omar et al., Sens. Actuators B 343, 130158 (2021)

    Article  Google Scholar 

  14. Y. Zhu, Y. Zhang, J. Yu, C. Zhou et al., Sens. Actuators B 374, 132815 (2023)

    Article  CAS  Google Scholar 

  15. R.R. Cranston, M.C. Vebber, J.F. Berbigier et al., ACS Appl. Mater. Interfaces. 13, 1008 (2021). https://doi.org/10.1021/acsami.0c17657

    Article  CAS  PubMed  Google Scholar 

  16. M. Berlinghof, C. Bar, D. Haas et al., J. Synchrotron Radiat. 25, 1664 (2018). https://doi.org/10.1107/S1600577518013218

    Article  CAS  PubMed  Google Scholar 

  17. Z. Peng, L. Ye, H Ade, Mater. Horiz. 9, 577 (2022). https://doi.org/10.1039/D0MH00837K

    Article  CAS  PubMed  Google Scholar 

  18. S. Dai, Y. Xiao, P. Xue et al., Chem. Mater. 30, 5390 (2018). https://doi.org/10.1021/acs.chemmater.8b02222

    Article  CAS  Google Scholar 

  19. W. Chen, M.P. Nikiforov, S.B. Darling, Energy Environ. Sci. 5, 8045 (2012). https://doi.org/10.1039/C2EE22056C

    Article  CAS  Google Scholar 

  20. T.V. Basova, V.G. Kiselev, I.S. Dubkov et al., J. Phys. Chem. C 117, 7097 (2013). https://doi.org/10.1021/jp4016257

    Article  CAS  Google Scholar 

  21. J. Rivnay, S.C.B. Mannsfeld, C.E. Miller, A. Salleo, M.F. Toney, Chem. Rev. 112, 5488 (2012). https://doi.org/10.1021/cr3001109

    Article  CAS  PubMed  Google Scholar 

  22. A. Mahmood, J.L. Wang, Solar RRL. 4, 2000337 (2020)

    Article  CAS  Google Scholar 

  23. L. Meng, K. Wang, Y. Han et al., Progress in Natural Science. Mater. Int. 27, 329 (2017). https://doi.org/10.1016/j.pnsc.2017.04.010

    Article  CAS  Google Scholar 

  24. Z.J. Comeau, R.R. Cranston, H.R. Lamontagne, C.S. Harris, A.J. Shuhendler, BH Lessard, Commun. Chem. 5, 178 (2022). https://doi.org/10.1038/s42004-022-00797-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T.J. Aldrich, S.M. Swick, F.S. Melkonyan, T.J. Marks, Chem. Mater. 29, 10294 (2017). https://doi.org/10.1021/acs.chemmater.7b04616

    Article  CAS  Google Scholar 

  26. Z. Bi, H.B. Naveed, Y. Mao, H. Yan, W Ma, Macromolecules. 51, 6682 (2018)

    Article  CAS  Google Scholar 

  27. Y. Yang, Z.-G. Zhang, H. Bin et al., J. Am. Chem. Soc. 138, 15011 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. P. Scherrer, Nach. Ges. Wiss. Gottingen. 2, 8–100 (1918)

    Google Scholar 

  29. C.D. Bojorge, E.A. Heredia, HR Cánepa, Surf. Interfaces. 36, 102532 (2023). https://doi.org/10.1016/j.surfin.2022.102532

    Article  CAS  Google Scholar 

  30. J. Perlich, J. Rubeck, S. Botta et al., Rev. Sci. Instrum. 81, 105105 (2010). https://doi.org/10.1063/1.3488459

    Article  CAS  PubMed  Google Scholar 

  31. B. Lee, C.-T. Lo, P. Thiyagarajan, D.R. Lee, Z. Niu, Q. Wang, J. Appl. Crystallogr. 41, 134 (2008). https://doi.org/10.1107/S0021889807051345

    Article  CAS  Google Scholar 

  32. F.A. Natashah, A.A.M. Sabri, H. Alzahrani et al., Synth. Met. 293, 117299 (2023). https://doi.org/10.1016/j.synthmet.2023.117299

    Article  CAS  Google Scholar 

  33. M.A. Najeeb, Z. Ahmad, R.A. Shakoor, Adv. Mater. Interfaces. 5, 1800969 (2018)

    Article  Google Scholar 

  34. N. Turetta, M.-A. Stoeckel, R. Furlan de, Oliveira et al., J. Am. Chem. Soc. 144, 2546 (2022). https://doi.org/10.1021/jacs.1c10119

    Article  CAS  PubMed  Google Scholar 

  35. X. Zhang, D. He, Q. Yang, M.Z. Atashbar, Chem. Eng. J. 433, 133751 (2022). https://doi.org/10.1016/j.cej.2021.133751

    Article  CAS  Google Scholar 

  36. R. Alrammouz, J. Podlecki, A. Vena et al., Sens. Actuators B 298, 126892 (2019). https://doi.org/10.1016/j.snb.2019.126892

    Article  CAS  Google Scholar 

  37. M. Wang, Z. Zhang, H. Zhong et al., Angew. Chem. Int. Ed. 61, e202117210 (2022). https://doi.org/10.1002/anie.202117210

    Article  CAS  Google Scholar 

  38. J.R. McGhee, J.S. Sagu, D.J. Southee, P.S. Evans, KU Wijayantha, ACS Appl. Electron. Mater. 2, 3593 (2020)

    Article  CAS  Google Scholar 

  39. S. Ali, M.A. Jameel, C.J. Harrison, A. Gupta, M. Shafiei, S.J. Langford, Sens. Actuators B 351, 130972 (2022)

    Article  CAS  Google Scholar 

  40. M.A.A. Rehmani, K. Lal, A. Shaukat, K.M. Arif, Sci. Rep. 12, 6928 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. E. Ganbold, E.S. Kim, Y. Li et al., ACS Appl. Mater. Interfaces. 15, 4559 (2023)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Mu, P. Jin, L. Zheng et al., Microchem. J. 191, 108934 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research used resources from the Advanced Light Source, a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. An ALS Collaborative Postdoctoral Fellowship partly supported Aidan H. Coffey. The authors acknowledge the support provided by IUPAP-IUCr-ICTP LAAAMP.

Author information

Authors and Affiliations

Authors

Contributions

Fadlan Arif Natashah: writing—original draft. Syaza Nafisah Hisamuddin: formal analysis. Aidan H. Coffey: writing—review ānd editing. Chenhui Zhu: project administration. Tahani M. Bawazeer: visualization. Mohammad S. Alsoufi: Data Curation. Nur Adilah Roslan: resources. Azzuliani Supangat: supervision.

Corresponding author

Correspondence to Azzuliani Supangat.

Ethics declarations

Competing interests

The authors have no competing interests to declare relevant to this article’s content.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natashah, F.A., Hisamuddin, S.N., Coffey, A.H. et al. Edge-on orientation of thermally evaporated metal phthalocyanines thin films for humidity sensing application. J Mater Sci: Mater Electron 35, 512 (2024). https://doi.org/10.1007/s10854-024-12280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12280-6

Navigation