Skip to main content
Log in

Defect chemistry, self-modified Ti3+-doped TiO2 as a photoanode material for dye-sensitized solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To meet the energy demand of modern society, we vote in renewable energy source particularly dye-sensitized solar cells (DSSC). In this regard, the efficiency of DSSCs was improved by self-doped Ti3+ on Titanium dioxide (TiO2) surface. The integration of Ti3+ resulted in formation of oxygen vacancy that leads to generation of free electron. The formation of oxygen vacancy and free electron are observed in X-ray photo spectroscopy and the Electron Spin Resonance spectra. Further, oxygen vacancies in TiO2 have helped in retards the photo-generated electron and hole pairs and fine-tuned the agglomerated particles into uniform particles. The presence of oxygen vacancies increases the local charge density of free electron, and this energy level of oxygen vacancy can serve as electron donor states. Markedly, the maximum photo-conversion efficiency of 6.5% was achieved for Ti3+-incorporated TiO2 photoanode with the open-circuit voltage (Voc) of 0.759 Voltage (V) and short-circuit current (Jsc) of 10.5 mA/cm2, whereas the pristine photoanode showed maximum photo-conversion efficiency of 5.0% with Voc of 0.767 V and Jsc of 8.6 mA/cm2. The increase in photo-generated electron–hole pair was also validated by transient photocurrent measurement and impedance spectra. The results indicate the importance of the vacancies present in the metal oxide for developing DSSCs with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. I. Capellán-Pérez, M. Mediavilla, C. de Castro, Ó. Carpintero, L.J. Miguel, Energy 77, 641–666 (2014)

    Article  Google Scholar 

  2. K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, Lu. Jun, ACS Appl. Mater. Interfaces 9, 11577–11586 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660–1667 (2013)

    Article  CAS  Google Scholar 

  4. M. Amiri, M. Salavati-Niasari, A. Akbari, T. Gholami, Int. J. Hydrog. Energy 42, 24846–24860 (2017)

    Article  CAS  Google Scholar 

  5. B. Neppolian, Ceram. Int. 48, 29025–29030 (2022)

    Article  Google Scholar 

  6. T.R. Naveen Kumar, S. Kamalakannan, M. Prakash, B. Viswanathan, B. Neppolian, ACS Appl. Energy Mater. 5, 2104–2111 (2022)

    Article  Google Scholar 

  7. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. M. Iqbal, A.A. Thebo, W.B. Jatoi, M.T. Tabassum, M.U. Rehman, K.H. Thebo, M.A. Mohsin, S. Ullah, A.H. Jatoi, I. Shah, Inorg. Chem. Commun. 116, 107902 (2020)

    Article  CAS  Google Scholar 

  9. K. Prakash, V. Sudhakar, M. Sankar, K. Krishnamoorthy, Dyes Pigm. 160, 386–394 (2019)

    Article  CAS  Google Scholar 

  10. T.R. Naveen Kumar, S. Yuvaraj, P. Kavitha, V. Sudhakar, K. Krishnamoorthy, B. Neppolian, Sol. Energy 201, 965–971 (2020)

    Article  CAS  Google Scholar 

  11. M.A. Irshad, R. Nawaz, M.Z. Rehman, M. Adrees, M. Rizwan, S. Ali, S. Ahmad, S. Tasleem, Ecotoxicol Environ Safe. 212, 111978 (2021)

    Article  CAS  Google Scholar 

  12. X. Zhang, S. Zhang, X. Cui, W. Zhou, W. Cao, D. Cheng, Y. Sun, Chem. Asian J. 17, e202200668 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. S. Hussain, Y. Li, A. Mustehsin, A. Ali, K.H. Thebo, Z. Ali, S. Hussain, Ionics 27, 4849–4857 (2021)

    Article  CAS  Google Scholar 

  14. S.H. Chiou, H.C. Ho, H.T. Liao, F.Y. Tsai, C.W. Tsao, Y.J. Hsu, C.H. Hsueh, J. Photochem. Photobiol. A 443, 114816 (2023)

    Article  CAS  Google Scholar 

  15. M.Y.A. Rahman, A.A. Umar, S.K.M. Saad, M.M. Salleh, A. Ishaq, J. New Mater. Electrochem. Syst. 17, 033–037 (2014)

    Article  CAS  Google Scholar 

  16. S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee, M.H. Cho, Nanoscale 5, 9238–9246 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Z. Heydariyan, R. Monsef, M. Salavati-Niasari, J. Alloy. Compd. 924, 166564 (2022)

    Article  CAS  Google Scholar 

  18. S. Hussain, Y. Li, F.H. Memon, S. Hussain, L. Li, K.H. Thebo, Prog. Nat. Sci. Mater. Int. 32, 128–134 (2022)

    Article  CAS  Google Scholar 

  19. M. Iqbal, A. Ali, K.S. Ahmad, F.M. Rana, J. Khan, K. Khan, K.H. Thebo, SN Appl. Sci. 1, 1–8 (2019)

    CAS  Google Scholar 

  20. M. Iqbal, A. Ali, N.A. Nahyoon, A. Majeed, R. Pothu, S. Phulpoto, K.H. Thebo, Mater. Sci. Energy Technol. 2, 41–45 (2019)

    Google Scholar 

  21. M. Iqbal, A. Ibrar, A. Ali, S. Hussain, S. Shad, S. Ullah, T. Alshahrani, J. Hakami, F. Khan, K.H. Thebo, J. Mol. Struct. 1267, 133598 (2022)

    Article  CAS  Google Scholar 

  22. M. Iqbal, A. Ibrar, A. Ali, F. Rehman, A.H. Jatoi, W.B. Jatoi, S.N. Phulpoto, K.H. Thebo, Environ. Technol. 43, 1783–1790 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. M. Iqbal, A.A. Thebo, A.H. Shah, A. Iqbal, K.H. Thebo, S. Phulpoto, M.A. Mohsin, Inorg. Chem. Commun. 76, 71–76 (2017)

    Article  CAS  Google Scholar 

  24. J. Khan, H. Ullah, M. Sajjad, A. Ali, K.H. Thebo, Inorg. Chem. Commun. 98, 132–140 (2018)

    Article  CAS  Google Scholar 

  25. J. Khan, H. Ullah, M. Sajjad, W.B. Jatoi, A. Ali, K. Khan, K.H. Thebo, Mater. Res. Exp. 6, 075074 (2019)

    Article  CAS  Google Scholar 

  26. H. Khojasteh, M. Salavati-Niasari, H. Safajou, H. Safardoust-Hojaghan, Diam. Relat. Mater. 79, 133–144 (2017)

    Article  CAS  Google Scholar 

  27. N.A. Nahyoon, M. Mehdi, K.H. Thebo, N. Mahar, A.A. Memon, N. Memon, N. Hussain, Opt. Mater. 135, 113260 (2023)

    Article  Google Scholar 

  28. M. Panahi-Kalamuei, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, J. Alloys Compd. 617, 627–632 (2014)

    Article  CAS  Google Scholar 

  29. S.N. Karthick, K.V. Hemalatha, S.K. Balasingam, F.M. Clinton, S. Akshaya, H.J. Kim, Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells (Wiley, Hoboken, 2019), pp.1–16

    Book  Google Scholar 

  30. S. Borbón, S. Lugo, I. López, Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (Springer, Cham, 2020), pp.1–33

    Book  Google Scholar 

  31. T. Gatti, F. Lamberti, R. Mazzaro, I. Kriegel, D. Schlettwein, F. Enrichi, N. Lago, E. Di Maria, G. Meneghesso, A. Vomiero, Adv. Energy Mater. 11, 2101041 (2021)

    Article  CAS  Google Scholar 

  32. Xu. Weiwei, W. Tian, L. Li, Solar RRL 5, 2000412 (2021)

    Article  Google Scholar 

  33. A. Badreldin, A.E. Abusrafa, A. Abdel-Wahab, Chemsuschem 14, 10–32 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Y.C. Zhang, N. Afzal, L. Pan, X. Zhang, J.J. Zou, Adv. Sci. 6, 1900053 (2019)

    Article  Google Scholar 

  35. Q. Wang, M. Li, Z. Wang, RSC Adv. 9, 7811–7817 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R. Hong, C. Deng, M. Jing, H. Lin, C. Tao, D. Zhang, Opt. Mater. 95, 109224 (2019)

    Article  CAS  Google Scholar 

  37. D. Li, Z. Jiang, Q. Xia, Z. Yao, Appl. Surf. Sci. 491, 319–327 (2019)

    Article  CAS  Google Scholar 

  38. S. Pan, X. Liu, M. Guo, S.F. Yu, H. Huang, H. Fan, G. Li, J. Mater. Chem. A 3, 11437–11443 (2015)

    Article  CAS  Google Scholar 

  39. J.H. Xiang, Z. Zhang, F.S. Zhang, S. Kaneko, M. Okuya, H.P. Zhang, Key Eng. Mater. 336, 2337–2339 (2007)

    Article  Google Scholar 

  40. T.R. Naveen Kumar, M. Swamynadhan, S. Ghosh, B. Neppolian, Sustain. Energy Fuels 6, 3573–3581 (2022)

    Article  CAS  Google Scholar 

  41. M. Salavati-Niasari, M. Dadkhah, F. Davar, Polyhedron 28, 3005–3009 (2009)

    Article  CAS  Google Scholar 

  42. F. Soomro, J. Khan, S. Ullah, A. Abutaleb, N. Zouli, M. Iqbal, M. Sajjad, F. Khan, K. HussainThebo, Inorg. Chem. Commun. 155, 111023 (2023)

    Article  CAS  Google Scholar 

  43. N.N. Erdoğan, A.B. Başyiğit, Int. J. Mater. Eng. Technol. 6, 21–25 (2023)

    Google Scholar 

  44. K. Shahzad, M.B. Tahir, M. Sagir, N.A. Alhakamy, M.R. Kabli, Ceram. Int. 47, 31337–31348 (2021)

    Article  CAS  Google Scholar 

  45. H. Khan, I.K. Swati, Ind. Eng. Chem. Res. 55, 6619–6633 (2016)

    Article  CAS  Google Scholar 

  46. Z. Wang, L. Wang, EcoMat 3, e12075 (2021)

    Article  CAS  Google Scholar 

  47. A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.L. Lee, L. Giordano, K.A. Stoerzinger, M.T.M. Koper, Y. Shao-Horn, Nat. Chem. 9, 457–465 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. O. Nan-Quan, H.J. Li, B.W. Lyu, B.J. Gui, X. Sun, D.J. Qian, Y. Jia, X. Wang, J. Yang, Catalysts 9, 345 (2019)

    Article  Google Scholar 

  49. P. Wen, Y. Zhang, X. Guang, D. Ma, P. Qiu, X. Zhao, J. Materiomics 5, 696–701 (2019)

    Article  Google Scholar 

  50. S. Selcuk, A. Selloni, Nat. Mater. 15, 1107–1112 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. M.E. Abdelnaby, M.E. Saeid, S.S. Mustafa, G. Cao, J. Wang, J. Electron. Mater. 52, 1347–1356 (2023)

    Article  Google Scholar 

  52. T.R. Naveen Kumar, P. Karthik, B. Neppolian, Nanoscale 12, 14213–14221 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2024R956), King Saud University, Riyadh, Saudi Arabia. This work is also supported by NRF-2019R1A5A8080290 of the National Research Foundation of Korea.

Funding

Funding was provided by King Saud University (Grant No. RSPD2024R956).

Author information

Authors and Affiliations

Authors

Contributions

GK: Conceptualization, Methodology, Experimental, Investigation, Graphical Work, and Writing—original draft. PR: Methodology, Investigation, Graphical Work, Writing—original draft, Resources. MRK and IAA: Formal Analysis, MD, SWJ: Investigation, Formal Analysis, Editing, Writing—Review, and Supervision.

Corresponding authors

Correspondence to Pitcheri Rosaiah, M. Dhananjaya or Sang Woo Joo.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 303 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, G., Rosaiah, P., Karim, M.R. et al. Defect chemistry, self-modified Ti3+-doped TiO2 as a photoanode material for dye-sensitized solar cell. J Mater Sci: Mater Electron 35, 505 (2024). https://doi.org/10.1007/s10854-024-12255-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12255-7

Navigation