Skip to main content
Log in

Design and fabrication of NiSe2/g-C3N4 hybrid composite counter electrode for Pt-free dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this study is to illustrate the feasibility of Pt-free Dye-Sensitized Solar Cells (DSSCs) at a reduced cost. To achieve this, we employed a straightforward ultrasonic-assisted hydrothermal method to synthesize composites consisting of NiSe2 and different concentrations of 10%, 15%, and 20% of graphitic carbon nitride (NiSe2/g-C3N4). These composites serve as electrocatalysts in the process of reducing tri-iodide to iodide within the DSSCs. The XRD, TEM, UV, Raman, and XPS spectra were employed to analyze the crystalline structure, morphology, and quantum states of these materials. NS-GN20 exhibited a high level of optical transmittance in the visible region, while a decrease in the optical bandgap was observed as the concentration of GN increased, decreasing from 1.82 to 1.56 eV. Cyclic voltammetry (CV) analysis of NS-GN20 electrodes revealed a more rapid reduction of triiodide ions at the electrode/electrolyte interface compared to the other electrodes. The 20% graphitic carbon nitride decorated NiSe2 composite counter electrode outperformed the others with a remarkable power conversion efficiency (PCE) of 8.54%, accompanied by a short-circuit current (JSC) of 16.1 mA cm−2 and an open-circuit voltage (VOC) of 0.686 V. The overall enhancement in photovoltaic performance can be attributed to the synergistic effects of highly catalytic NiSe2 nanoparticles and the electrically conductive graphitic carbon nitride. Therefore, NiSe2/g-C3N4 hybrid composite is expected to be an efficient and cost-effective CE material for DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data analyzed during the study are included in this article and will be made upon reasonable request.

References

  1. M. Farghali, A.I. Osman, I.M. Mohamed, Z. Chen, L. Chen, I. Ihara, D.W. Rooney, Strategies to save energy in the context of the energy crisis: a review. Environ. Chem. Lett. 21, 2003 (2023)

    CAS  Google Scholar 

  2. A. Nabera, I.R. Istrate, A.J. Martín, J. Pérez-Ramírez, G. Guillén-Gosálbez, Energy crisis in Europe enhances the sustainability of green chemicals. Green Chem. 25(17), 6603–6611 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Y. Liu, C. Feng, Promoting renewable energy through national energy legislation. Energy Econ. 118, 106504 (2023)

    Google Scholar 

  4. A.S. Al-Ezzi, M.N.M. Ansari, Photovoltaic solar cells: a review. Appl. Syst. Innov. 5(4), 67 (2022)

    Google Scholar 

  5. S. Palei, G. Murali, C.H. Kim, I. In, S.Y. Lee, S.J. Park, A review on interface engineering of MXenes for Perovskite solar cells. Nano-Micro Lett. 15(1), 1–39 (2023)

    Google Scholar 

  6. T. Nie, Z. Fang, X. Ren, Y. Duan, S. Liu, Recent advances in wide-bandgap organic-inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 15(1), 70 (2023)

    ADS  CAS  Google Scholar 

  7. M. Durairasan, P.S. Karthik, J. Balaji, B. Rajeshkanna, Design and fabrication of WSe2/CNTs hybrid network: a highly efficient and stable electrodes for dye sensitized solar cells (DSSCs). Diam. Relat. Mater. 111, 108174 (2021)

    ADS  CAS  Google Scholar 

  8. F. Schoden, A.K. Schnatmann, T. Blachowicz, H. Manz-Schumacher, E. Schwenzfeier-Hellkamp, Circular design principles applied on dye-sensitized solar cells. Sustainability 14(22), 15280 (2022)

    CAS  Google Scholar 

  9. P.A. Ahmad, F.A. Mir, Photovoltaic response of Carissa spinarum berry extract in dye-sensitized solar cell. Environ. Sci. Pollut. Res. 30(44), 98581–98588 (2023)

    CAS  Google Scholar 

  10. N.A.S. Aziz, M.Y.A. Rahman, A.A. Umar, E.R. Mawarnis, Palladium films as cathode in dye-sensitized solar cell: influence of the concentration of potassium hexachloropalladate. Appl. Phys. A 129(11), 816 (2023)

    ADS  CAS  Google Scholar 

  11. R.H. Althomali, S.I.S. Al-Hawary, A. Gehlot, M.T. Qasim, B. Abdullaeva, I.B. Sapaev, A. Alsalamy, A novel Pt-free counter electrode based on MoSe2 for cost effective dye-sensitized solar cells (DSSCs): effect of Ni doping. J. Phys. Chem. Solids 182, 111597 (2023)

    CAS  Google Scholar 

  12. A. Alizadeh, M. Roudgar-Amoli, Z. Shariatinia, E. Abedini, S. Asghar, S. Imani, Recent developments of perovskites oxides and spinel materials as platinum-free counter electrodes for dye-sensitized solar cells: a comprehensive review. Renew. Sustain. Energy Rev. 187, 113770 (2023)

    CAS  Google Scholar 

  13. E. Akman, H. Karapinar, S, electrochemically stable, cost-effective and facile produced selenium@ activated carbon composite counter electrodes for dye-sensitized solar cells. Sol. Energy 234, 368–376 (2022)

    ADS  CAS  Google Scholar 

  14. Y. Kurokawa, T. Kato, S. Pandey, Controlling the electrocatalytic activities of conducting polymer thin films toward suitability as cost-effective counter electrodes of dye-sensitized solar cells. Synth. Met. 296, 117362 (2023)

    CAS  Google Scholar 

  15. J. Raveena, G. Bakiyaraj, J. Archana, M. Navaneethan, Investigation of the photovoltaic efficiency of dye-sensitized solar cells using transition metal (Cu, Mo, and Ni)-doped 2D SnS2 nanoflakes counter-electrodes. J. Mater. Sci. Mater. Electron. 34(14), 1164 (2023)

    CAS  Google Scholar 

  16. I.M. Khan, R. Nazar, U. Mehmood, Development of polypyrrole/graphene (PPY/graphene) based electrocatalyst for platinum free dye-sensitized solar cells (DSSCs). Mater. Lett. 320, 132331 (2022)

    Google Scholar 

  17. X. Qian, H. Liu, Y. Huang, Z. Ren, Y. Yu, C. Xu, L. Hou, Co-Ni-MoSx yolk-shell nanospheres as superior Pt-free electrode catalysts for highly efficient dye-sensitized solar cells. J. Pow. Sour. 412, 568–574 (2019)

    CAS  Google Scholar 

  18. S.E. Sheela, R. Sekar, D.K. Maurya, M. Paulraj, S. Angaiah, Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells. Mater. Sci. Semicond. Process. 156, 107273 (2023)

    CAS  Google Scholar 

  19. L. Sun, T. Zhang, Y. Liu, J. Wang, W. Zong, Y. Cao, X. Wang, Hierarchical NiSe microspheres as high-efficiency counter electrode catalysts for triiodide reduction reaction. Sol. Energy 225, 486–493 (2021)

    ADS  CAS  Google Scholar 

  20. C. Lv, T. Zhang, X. Wang, H. Pan, Z. Xie, H. Lu, K. Pan, Y. Xie, Enhancement of the triiodide reduction reaction by doping molybdenum in NiSe hierarchical microspheres: a theoretical and experimental study. Inorg. Chem. Front. 10(2), 460–467 (2023)

    CAS  Google Scholar 

  21. F. Gong, X. Xu, Z. Li, G. Zhou, Z.S. Wang, NiSe 2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem. Commun. 49(14), 1437–1439 (2013)

    CAS  Google Scholar 

  22. J. Jia, J. Wu, Y. Tu, J. Huo, M. Zheng, J. Lin, Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells. J. Alloy. Compds. 640, 29–33 (2015)

    CAS  Google Scholar 

  23. B.A. Khan, A. Rafaqat Hussain, A.M. Shah, M.Z.U. Shah, J. Ismail, S. Rahman, M. Sajjad, M.A. Assiri, M. Imran, M.S. Javed, NiSe2 nanocrystals intercalated rGO sheets as a high-performance asymmetric supercapacitor electrode. Ceram. Int. 48(4), 5509–5517 (2022)

    CAS  Google Scholar 

  24. G. Wu, P. Wei, X. Chen, Z. Zhang, Z. Jin, J. Liu, L. Liu, Less is more: biological effects of NiSe2/rGO nanocomposites with low dose provide new insight for risk assessment. J. Hazard. Mater. 415, 125605 (2021)

    CAS  PubMed  Google Scholar 

  25. X. Zhang, Y. Yang, S. Guo, F. Hu, L. Liu, Mesoporous Ni0. 85Se nanospheres grown in situ on graphene with high performance in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7(16), 8457–8464 (2015)

    CAS  PubMed  Google Scholar 

  26. P. Wei, Z. Hao, Y. Yang, & Liu, L, Hollow NiSe2 nanospheres grown on graphene with unconventional dual-vacancies in dye-sensitized solar cells. Appl. Surf. Sci. 553, 149567 (2021)

    CAS  Google Scholar 

  27. S. Wang, P. He, L. Jia, M. He, T. Zhang, F. Dong, M. Liu, H. Liu, Y. Zhang, C. Li, J. Gao, Nanocoral-like composite of nickel selenide nanoparticles anchored on two-dimensional multi-layered graphitic carbon nitride: a highly efficient electrocatalyst for oxygen evolution reaction. Appl. Catal. B 243, 463–469 (2019)

    CAS  Google Scholar 

  28. W. Li, Q. Chen, Q. Zhong, One-pot fabrication of mesoporous g-C3N4/NiS co-catalyst counter electrodes for quantum-dot-sensitized solar cells. J. Mater. Sci. 55(24), 10712–10724 (2020)

    ADS  CAS  Google Scholar 

  29. N. Shahzad, T. Perveen, D. Pugliese, S. Haq, N. Fatima, S.M. Salman, M.I. Shahzad, Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells. Renew. Sustain. Energy Rev. 159, 112196 (2022)

    CAS  Google Scholar 

  30. L. Sarma, M. Thirumal, Coupling of MoSe2 and graphitic carbon nitride (g-C3N4) by facile hydrothermal route for enhanced visible-light photocatalytic properties. Mater. Today Proc. 36, 679–688 (2021)

    CAS  Google Scholar 

  31. Z. Salam, E. Vijayakumar, A. Subramania, N. Sivasankar, S. Mallick, Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 143, 250–259 (2015)

    CAS  Google Scholar 

  32. K. Subalakshmi, J. Senthilselvan, Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency. Sol. Energy 171, 914–928 (2018)

    ADS  CAS  Google Scholar 

  33. S. Casaluci, M. Gemmi, V. Pellegrini, A. Di Carlo, F. Bonaccorso, Graphene-based large area dye-sensitized solar cell modules. Nanoscale 8(9), 5368–5378 (2016)

    ADS  CAS  PubMed  Google Scholar 

  34. L. Zhou, F. Xiong, S. Tan, Q. An, Z. Wang, W. Yang, Z. Tao, Y. Yao, J. Chen, L. Mai, Nickel-iron bimetallic diselenides with enhanced kinetics for high-capacity and long-life magnesium batteries. Nano Energy 54, 360–366 (2018)

    CAS  Google Scholar 

  35. D. Ramki, M. Dharmendira Kumar, P. Siva Karthik, Nanohybrids of 1D tin oxide (SnO2) nanotubes 2D-reduced graphene oxide (RGO) for improving photodegradation of Cr (VI). J. Mater. Sci. Mater. Electron. 34(6), 551 (2023)

    CAS  Google Scholar 

  36. W. Shi, X. Zhang, G. Che, Hydrothermal synthesis and electrochemical hydrogen storage performance of porous hollow NiSe nanospheres. Int. J. Hydrogen Energy 38(17), 7037–7045 (2013)

    CAS  Google Scholar 

  37. U.M. Nisha, M.N. Meeran, R. Sethupathi, V. Subha, P. Rajeswaran, P. Sivakarthik, Studies on Chitosan modified ZrO2–CeO2 metal oxide and their photo catalytic activity under solar light irradiation for water remediation. J. Indian Chem. Soc. 100(8), 101061 (2023)

    CAS  Google Scholar 

  38. S. Ambika, S. Gopinath, K. Saravanan, K. Sivakumar, T.A. Sukantha, P. Paramasivan, Preparation and characterization of nanocopper ferrite and its green catalytic activity in alcohol oxidation reaction. J. Supercond. Nov. Magn. 32, 903–910 (2019)

    CAS  Google Scholar 

  39. M.S. Vidhya, G. Ravi, R. Yuvakkumar, D. Velauthapillai, M. Thambidurai, C. Dang, B. Saravanakumar, Nickel–cobalt hydroxide: a positive electrode for supercapacitor applications. RSC Adv. 10(33), 19410–19418 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Zheng, K. Cheng, R. Zhang, Y. Wu, Y. Yang, P. Yu, Hydrothermal preparation of CQDs/MoS 2/NiSe 2 composite as electrode material for supercapacitor. J. Mater. Sci. Mater. Electron. 31, 9366–9376 (2020)

    CAS  Google Scholar 

  41. Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angewandte Chem. Int. Ed. 51(1), 68–89 (2012)

    CAS  Google Scholar 

  42. Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 46(26), 4740–4742 (2010)

    CAS  Google Scholar 

  43. M. Durairasan, P.S. Karthik, J. Balaji, B. Rajeshkanna, Enhanced visible light photocatalytic performance of WSe2/CNT hybrid photocatalysts that were synthesized by a facile hydrothermal route. Ionics 27(5), 2151–2158 (2021)

    CAS  Google Scholar 

  44. A. Yildiz, T. Chouki, A. Atli, M. Harb, S.W. Verbruggen, R. Ninakanti, S. Emin, Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells. ACS Appl. Energy Mater. 4(10), 10618–10626 (2021)

    CAS  Google Scholar 

  45. C. Jeganathan, T.S. Girisun, S. Vijaya, S. Anandan, Improved charge collection and photo conversion of bacteriorhodopsin sensitized solar cells coupled with reduced graphene oxide decorated one-dimensional TiO2 nanorod hybrid photoanodes. Electrochim. Acta 319, 909–921 (2019)

    CAS  Google Scholar 

  46. V. Arunprasad, P. Siva Karthik, S. Thulasi, G.P. Arul, M. Shkir, A.T. Rajamanickam, T. Sumathi, S.R. Fredrick, Hydrothermal preparation of Ni 3 S 4/CoS 2 composite electrocatalytic materials for high performance counter electrodes of dye-sensitized solar cells. J. Clust. Sci. 33, 2651 (2022)

    CAS  Google Scholar 

  47. B. He, Q. Tang, J. Luo, Q. Li, X. Chen, H. Cai, Rapid charge-transfer in polypyrrole–single wall carbon nanotube complex counter electrodes: improved photovoltaic performances of dye-sensitized solar cells. J. Power Sour. 256, 170–177 (2014)

    ADS  CAS  Google Scholar 

  48. M. Ostadebrahim, O. Moradlou, Electrochemical hydrogen storage in LaMO3 (M= Cr, Mn, Fe Co, Ni) nano-perovskites. J. Energy Storage 72, 108284 (2023)

    Google Scholar 

  49. B. Aljafari, S. James, G. Ahalya, S. Anandan, Acid red 88 dye doped polyaniline framed by soft template method: a potential candidate for dye-sensitized solar cells. J. Saudi Chem. Soc. 26(6), 101574 (2022)

    CAS  Google Scholar 

  50. F. Gong, X. Xu, Z. Li, G. Zhou, Z. Wang, S, NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chem. Commun. 49(14), 1437–1439 (2013)

    CAS  Google Scholar 

  51. C. Bao, F. Li, J. Wang, P. Sun, N. Huang, Y. Sun, … & Sun, X, One-pot solvothermal in situ growth of 1D single-crystalline NiSe on Ni foil as efficient and stable transparent conductive oxide free counter electrodes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(48), 32788–32796 (2016)

    CAS  PubMed  Google Scholar 

  52. H. Che, X. Liu, Y. Gao, J. Liu, Z. Cao, Hydrothermal electrochemical deposition synthesis NiSe2 as efficient counter electrode materials for dye-sensitized solar cells. J. Alloy. Compds. 705, 645–651 (2017)

    CAS  Google Scholar 

  53. X. Zhang, M. Zhen, J. Bai, S. Jin, L. Liu, Efficient NiSe-Ni3Se2/graphene electrocatalyst in dye-sensitized solar cells: the role of hollow hybrid nanostructure. ACS Appl. Mater. Interfaces 8(27), 17187–17193 (2016)

    CAS  PubMed  Google Scholar 

  54. X. Wang, Y. Xie, K. Pan, J. Wu, Y. Xiao, P. Yu, W. Zhou, H. Fu, Morphology effect of NiSe hierarchical microspheres on the performance of dye-sensitized solar cells. ACS Appl. Nano Mater. 1(9), 4900–4909 (2018)

    CAS  Google Scholar 

  55. X. Zhang, T.Z. Jing, S.Q. Guo, G.D. Gao, L. Liu, Synthesis of NiSe 2/reduced graphene oxide crystalline materials and their efficient electrocatalytic activity in dye-sensitized solar cells. RSC Adv. 4(92), 50312–50317 (2014)

    ADS  CAS  Google Scholar 

  56. C. Tamilselvi, P. Duraisamy, N. Subathra, Graphene wrapped NiSe2 nanocomposite-based counter electrode for dye-sensitized solar cells (DSSCs). Diam. Relat. Mater. 116, 108396 (2021)

    ADS  CAS  Google Scholar 

  57. M. Indhumathy, A. Prakasam, Controllable synthesis of NiS/rGO hybrid composite: an excellent counter electrode for dye sensitized solar cell. J. Clust. Sci. 31(1), 91–98 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Dr. N. Dhanasekar, performed data collection and formal analysis. The first draft of the manuscript written by Dr. M. Vanitha. Dr. N. Shankar performed review and editing process. M. Bindhu performed material design, planning and data validation, as well as reviewing and editing the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Dhanasekar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekar, N., Vanitha, M., Shankar, N. et al. Design and fabrication of NiSe2/g-C3N4 hybrid composite counter electrode for Pt-free dye-sensitized solar cells. J Mater Sci: Mater Electron 35, 443 (2024). https://doi.org/10.1007/s10854-024-12251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12251-x

Navigation