Skip to main content
Log in

Observations on the structural, piezoelectric, and impedance properties of cation-(La and Sn) modified lead zirconium titanate (PLZST) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural ambiguity was resolved quantitatively with dual-phase models of Cc + P4mm. Multiple-phase transition behaviors including Antiferroelectric (AFE) to Ferroelectric transition, transition at depolarization temperature, and AFE to paraelectric state transition were observed among PLZST samples and investigated in detail. The piezoelectric and impedance features of a modified PZT ceramic that has different mole ratios of La and Sn co-substitution are shown here. The principle of Archimedes shows that the synthesized specimens have sufficient density for withstanding high temperatures and higher fields while explaining them. We concentrated on the impedance and piezoelectric coefficients d33, g33, and figure of merit (FOM) of the ideal PbLaZrSnTiO3 (PLZST) composition (50/30/20) in this study. The PLZSTs consist of two phases (Cc + P4mm), which combine to generate a single phase with a high Sn content and a low La content. These structural correlations coexist with the dual evaluation of impedance and piezoelectric characteristics in order to produce optimum composition. In order to evaluate the impedance features, the property of activation energy for the grains also supports the PLZST (50/30/20) having superior properties among PLZSTs. The optimum composition will meet the current business's commercial needs through multiple windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that all the data generated or analyzed during this study are included in this manuscript.

References

  1. K.R. Kandula, S. Asthana, S.S.K. Raavi, Multifunctional Nd3+substituted Na0.5Bi0.5TiO3 as lead-free ceramics with enhanced luminescence, ferroelectric and energy harvesting properties. RSC Adv. 8, 15282 (2018). https://doi.org/10.1039/C8RA01349G

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Aissa, M. Zannen, H.A. Alzahrani, J. Belhadi, Y. Hadouch, D. Mezzane, A. Lahmar, Multifunctionality of rare earth doped 0.925Na0.5Bi0.5TiO3–0.075K0.5 Na0.5NbO3 ferroelectric ceramics. J. Alloys Compd. 921, 166188 (2022). https://doi.org/10.1016/j.jallcom.2022.166188

    Article  CAS  Google Scholar 

  3. J. Xiao, W. Jiang, D. Han, K. Li, L. Lou, Evolution of crystallographic orientation and microstructure in the triangular adapter of grain continuator of a 3rd-generation single crystal super alloy casting during directional solidification. J. Alloys Compd. 898, 162782 (2022). https://doi.org/10.1016/j.jallcom.2021.162782

    Article  CAS  Google Scholar 

  4. M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: phenomenology. Ferroelectrics 99(1), 13–25 (1989). https://doi.org/10.1080/00150198908221436

    Article  ADS  CAS  Google Scholar 

  5. M. de Oliveira, N.V. Araujo, R.N. Da Silva, T.I. Da Silva, J. Epaarachchi, Use of savitzky–golay filter for performances improvement of SHM systems based on neural networks and distributed PZT sensors. Sensors 18(1), 152 (2018). https://doi.org/10.3390/s18010152

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Y. Zhao, X. Hao, Q. Zhang, A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature. J. Mater. Chem. C. 3, 1694–1699 (2014). https://doi.org/10.1039/C4TC02381A

    Article  CAS  Google Scholar 

  7. B.A. Tuttle, D.A. Payne, The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics 37, 603–606 (1981). https://doi.org/10.1080/00150198108223496

    Article  ADS  CAS  Google Scholar 

  8. Q. Peng, K.R. Kandula, Z. Xia, C. Zhang, Y. Zhang, Y. Yang, G. Zhang, Electric field induced phase transitions and electrocaloric effect of La3+ doped Pb (Zr, Sn, Ti)O3 ceramics. Ceram. Int. 47(10), 13939–13947 (2021). https://doi.org/10.1016/j.ceramint.2021.01.262

    Article  CAS  Google Scholar 

  9. K.R. Kandula, T. Shet, M. Nuthalapati, K.L. Rao, A.A. Ansari, A.C. Babu, N.N. Rao, S. Vadnala, R. Bhimireddi, Structural phase modulation in Lanthanum and Tin co-substituted Pb(Zr, Ti)O3 ceramics and its energy and pyro-energy storage properties. Phys. Status Solidi A 220, 0421 (2022)

    Google Scholar 

  10. A.M. Jalaja, S. Dutta, Ferroelectrics and multiferroics for next generation photovoltaics. Adv. Mater. Lett. 6(7), 568–584 (2015). https://doi.org/10.5185/amlett.2015.5878

    Article  CAS  Google Scholar 

  11. J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009). https://doi.org/10.1016/S1003-6326(14)63302-1

    Article  CAS  Google Scholar 

  12. S.J. Buwalda, K.W. Boere, P.J. Dijkstra, J. Feijen, T. Vermonden, W.E. Hennink, Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 190, 254–273 (2014). https://doi.org/10.1016/j.jconrel.2014.03.052

    Article  CAS  PubMed  Google Scholar 

  13. M.D. Ali, F. Majid, A. Aslam, A. Malik, I. Wahid, A.J.C.I. Dahshan, Dielectric and electrical properties of synthesized PBGO/Fe3O4 nanocomposite. Ceram. Int. 47, 26224–26232 (2021). https://doi.org/10.1016/j.ceramint.2021.06.030

    Article  CAS  Google Scholar 

  14. Y. Li, S. Wu, X. Lv, J. Feng, F. Cheng, Study on the influence of interlayer temperature on microstructure and mechanical properties of submerged arc additively manufactured low-carbon steel and its in-situ toughening mechanism. J. Manuf. Process. 71, 356–373 (2021). https://doi.org/10.1016/j.jmapro.2021.09.016

    Article  Google Scholar 

  15. A.L. Usler, R.A. De Souza, A critical examination of the Mott-Schottky model of grain-boundary space-charge layers in oxide-ion conductors. J. Electrochem. Soc. 168(5), 056504 (2021). https://doi.org/10.1149/1945-7111/abfb37

    Article  ADS  CAS  Google Scholar 

  16. F.M. Casallas-Caicedo, E. Vera-López, J. Roa-Rojas, Impedance spectroscopy study of electrical response and correlation with structural properties in the La2SrFe2CoO9 triple complex perovskite. Phys. B 607, 412865 (2021). https://doi.org/10.1016/j.physb.2021.412865

    Article  CAS  Google Scholar 

  17. A. Hassan, Z. Wang, Y.H. Ahn, M. Azam, A.A. Khan, U. Farooq, Y. Cao, Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2022.107579

    Article  Google Scholar 

  18. Y. Zheng, T.J. Slade, L. Hu, X.Y. Tan, Y. Luo, Z. Luo, M.G. Kanatzidis, Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. 50, 9022–9054 (2021). https://doi.org/10.1039/D1CS00347J

    Article  CAS  PubMed  Google Scholar 

  19. S.S. Dani, A. Tripathy, N.R. Alluri, S. Balasubramaniam, A. Ramadoss, A critical review: impact of electrical poling on longitudinal piezoelectric strain coefficient. Mater. Adv. (2022). https://doi.org/10.1039/D2MA00559J

    Article  Google Scholar 

  20. I. Ali, H.A. ElMeleegi, A.A. Moez, Investigation of structural, optical dielectrical and optical conductivity properties of BaTiO3, Al0.01Ba0.99TiO3 and La0.01Ba0.99TiO3 thin films prepared by pulsed laser deposition. Phys. Scr. 94(12), 125810 (2019). https://doi.org/10.1088/1402-4896/ab1f25/meta

    Article  ADS  CAS  Google Scholar 

  21. A.I. Ali, S. El-Sayed, A. Hassen, Change the ferroelectric properties of Al0.01Ba0.99TiO3 ceramics by Al0.01Sr0.99TiO3 doping. Results. Phys. 14, 102368 (2019). https://doi.org/10.1016/j.rinp.2019.102368

    Article  Google Scholar 

  22. A.I. Ali, A. Hassen, N.C. Khang, Y.S. Kim, Ferroelectric, and piezoelectric properties of BaTi1−xAlxO3, 0≤ x≤ 0.015. AIP Adv. (2015). https://doi.org/10.1063/1.4930859

    Article  Google Scholar 

  23. A.I. Ali, C.W. Ahn, Y.S. Kim, Enhancement of piezoelectric and ferroelectric properties of BaTiO3 ceramics by aluminum doping. Ceram. Int. 39(6), 6623–6629 (2013). https://doi.org/10.1016/j.ceramint.2013.01.099

    Article  CAS  Google Scholar 

  24. T.F. Schranghamer, M. Sharma, R. Singh, S. Das, Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 50, 11032–11054 (2021). https://doi.org/10.1039/D1CS00706H

    Article  CAS  PubMed  Google Scholar 

  25. H.P. Kim, H. Wan, C. Luo, Y. Sun, Y. Yamashita, T. Karaki, X. Jiang, A review on alternating current poling for perovskite relaxor-PbTiO3 single crystals. IEEE Trans. Ultrason. Ferroelectric Freq. Control (2022). https://doi.org/10.1109/TUFFC.2022.3181236

    Article  Google Scholar 

  26. B. Noheda, J. Gonzalo, L. Cross, R. Guo, S.E. Park, D. Cox, G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687–8695 (2000). https://doi.org/10.1103/PhysRevB.61.8687

    Article  ADS  CAS  Google Scholar 

  27. E.A. Pandiscio, Exploring the link between preservice teachers’ conception of proof and the use of dynamic geometry software. Sch. Sci. Math. (2002). https://doi.org/10.1111/j.1949-8594.2002.tb18144.x

    Article  Google Scholar 

  28. G. Zhang, S. Jiang, Y. Zhang, T. Xie, Pyroelectric properties in three phases coexistence Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 lead ceramics. Curr. Appl. Phys. 9, 1434–1437 (2009). https://doi.org/10.1016/j.cap.2009.03.019

    Article  ADS  Google Scholar 

  29. X. Ding, L. Xu, Z. Hu, X. Chen, G. Wang, X. Dong, J. Chu, Phase diagram and incommensurate antiferroelectric structure in (Pb1−1.5xLax)(Zr0.42Sn0.40Ti0.18)O3 ceramics discovered by band-to-band optical transitions. Appl. Phys. Lett. 105, 131909 (2014). https://doi.org/10.1063/1.4897357

    Article  ADS  CAS  Google Scholar 

  30. K.R. Kandula, S.S.K. Raavi, S. Asthana, Correlation between structural, ferroelectric and luminescence properties through compositional dependence of Nd3+ ion in lead free Na0.5Bi0.5TiO3. J. Alloys Compd. 732, 233–239 (2018). https://doi.org/10.1016/j.jallcom.2017.10.186

    Article  CAS  Google Scholar 

  31. B. Tiwari, T. Babu, R.N.P. Choudhary, AC impedance and modulus spectroscopic studies of Pb(Zr0.35-xCexTi0.65)O3(x=0.00,0.05,0.10&0.15) ferroelectric ceramics. Mater. Chem. Phys. 256, 123655 (2020). https://doi.org/10.1016/j.matchemphys.2020.123655

    Article  CAS  Google Scholar 

  32. J. Qi, M. Cao, Y. Chen, Z. He, C. Tao, H. Hao, H. Liu, Cerium doped strontium titanate with stable high permittivity and low dielectric loss. J. Alloys Compd. 772, 1105–1112 (2019). https://doi.org/10.1016/j.jallcom.2018.09.061

    Article  CAS  Google Scholar 

  33. H. Chen, J. Xing, J. Xi, T. Pu, H. Liu, J. Zhu, Phase, domain, and microstructures in Sr2+ substituted low-temperature sintering PZT-based relaxor ferroelectrics. J. Am. Ceram. Soc. 104(12), 6266–6276 (2021). https://doi.org/10.1111/jace.17989

    Article  CAS  Google Scholar 

  34. X. Xu, X. Liu, R. Rao, Y. Zhao, H. Du, J. Shi, Electrical properties and conduction mechanisms of K, Ga co-substituted Na0.5Bi0.5TiO3 [NBT] ferroelectrics. Ceram. Int. 46, 22321–22329 (2020). https://doi.org/10.1016/j.ceramint.2020.05.312

    Article  CAS  Google Scholar 

  35. I. Rivera, A. Kumar, N. Ortega, R.S. Katiyar, S. Lushnikov, Divide line between relaxor, diffused ferroelectric, ferroelectric and dielectric. Solid State Commun. 149(3–4), 172–176 (2009). https://doi.org/10.1016/j.ssc.2008.10.026

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Authors’ sincere thanks to Dr. Rajashekar Reddy for his help in refinement and data analysis.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KT: Investigation and methodology, JA: Data curation and writing draft, RG: Methodology and data curation, NCRB, PS: Methodology and data validation, PG: Data validation and review and editing the manuscript, GN, ACB, Data validation, review, and editing the manuscript. VP: Conceptualization, supervision, and review and writing the manuscript.

Corresponding authors

Correspondence to Virupakshi Prabhakar or Pandiri Sreedhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirumalasetti, K., Ashok, J., Gudiguntla, R. et al. Observations on the structural, piezoelectric, and impedance properties of cation-(La and Sn) modified lead zirconium titanate (PLZST) ceramics. J Mater Sci: Mater Electron 35, 454 (2024). https://doi.org/10.1007/s10854-024-12244-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12244-w

Navigation