Skip to main content
Log in

Synthesis and efficient multicolor luminescence property of single-phase Eu3+ and Tb3+-doped Gd2(MoO4)3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

White light-emitting diodes (WLEDs) represent an attractive alternative to conventional white light sources due to its extraordinary properties in efficiency, durability, and cost-effectiveness. The exploration of highly efficient phosphors that can be excited by deep-UV LED chips has garnered substantial interest in recent years. In this study, we reported novel Eu3+ and Tb3+-co-doped Gd2(MoO4)3 phosphors which were prepared using heat treatment method on precursor synthesized via hydrothermal method. To explore the properties of efficient multicolor phosphors and understand the emission mechanism of the phosphors, we conducted spectroscopic studies on Gd2(MoO4)3:Eu3+, Tb3+ phosphors with various doping concentrations of Eu3+ and Tb3+. A comparison of a variety of spectroscopic techniques reveals that Tb3+ ions can transfer energy to surrounding Eu3+ ions due to matched energy level. The condition for energy transfer to occur is that the concentration of doped Eu3+ should not surpass its quenching threshold in Gd2(MoO4)3, while maintaining an appropriate doping concentration of Tb3+. Otherwise, co-doped Tb3+ may facilitate the energy transfer to the quenching centers of Eu3+, thereby inhibiting the emission of Eu3+. The calculated CIE color coordinates indicate that the emission color of phosphors can be tuned by adjusting the concentration of doping ions. The combined data suggest that the phosphor is a promising single host matrix-based multicolor emission material for use in the production of WLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Du, X. Wan, L. Luo, W. Li, L. Li, ACS Appl. Nano Mater. 4, 7062–7071 (2021)

    CAS  Google Scholar 

  2. Y. Liu, G. Liu, J. Wang, X. Dong, W. Yu, Inorg. Chem. 53, 11457–11466 (2014)

    CAS  PubMed  Google Scholar 

  3. S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie, X. Wang, J. Phys. Chem. C 111, 13256–13260 (2007)

    CAS  Google Scholar 

  4. S. Mukherjee, N. Pathak, K. Ali, D. Das, D. Dutta, Phys. Chem. Chem. Phys. 24, 10915–10927 (2022)

    CAS  PubMed  Google Scholar 

  5. M. Shang, C. Li, J. Lin, Chem. Soc. Rev. 43, 1372–1386 (2014)

    CAS  PubMed  Google Scholar 

  6. S. Zhang, Y. Li, Y. Lv, L. Fan, Y. Hu, M. He, Chem. Eng. J. 322, 314–327 (2017)

    CAS  Google Scholar 

  7. Y. Zhou, B. Yan, CrystEngComm. 15, 5694–5702 (2013)

    CAS  Google Scholar 

  8. Y. Liu, Y. Wang, L. Wang, Y.-Y. Gu, S.-H. Yu, Z.-G. Lu, R. Sun, RSC Adv. 4, 4754–4762 (2013)

    ADS  Google Scholar 

  9. A. Li, D. Xu, H. Lin, S. Yang, Y. Shao, Y. Zhang, Z. Chen, RSC Adv. 5, 45693–45702 (2015)

    CAS  ADS  Google Scholar 

  10. C. Wang, T. Zhou, J. Jiang, H. Geng, Z. Ning, X. Lai, J. Bi, D. Gao, ACS Appl. Mater. Interfaces. 9, 26184–26190 (2017)

    CAS  PubMed  Google Scholar 

  11. Y. Li, H. Lu, G. Song, X. Zhang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 29, 13–18 (2014)

    Google Scholar 

  12. P. Kumar, B.K. Gupta, RSC Adv. 5, 24729–24736 (2015)

    CAS  ADS  Google Scholar 

  13. A. Kumari, L. Mukhopadhyay, V.K. Rai, New. J. Chem. 43, 6249–6256 (2019)

    CAS  Google Scholar 

  14. V.A. Morozov, M.V. Raskina, B.I. Lazoryak, K.W. Meert, K. Korthout, P.F. Smet, D. Poelman, N. Gauquelin, J. Verbeeck, A.M. Abakumov, J. Hadermann, Chem. Mater. 26, 7124–7136 (2014)

    CAS  Google Scholar 

  15. G. Seeta Rama Raju, E. Pavitra, G.P. Nagaraju, R. Kandimalla, B.F. El-Rayes, J.S. Yu, Cryst. Growth. Des. 13, 4051–4058 (2013)

    Google Scholar 

  16. L. Han, J. Liu, P. Liu, B. Li, X. Li, Y. Xu, J. Phys. Chem. Solids. 153, 110032 (2021)

    CAS  Google Scholar 

  17. L. Zhang, B. Dong, G. Wang, R. Gao, G. Su, W. Wang, L. Cao, J. Colloid Interface Sci. 504, 134–139 (2017)

    CAS  PubMed  ADS  Google Scholar 

  18. S. Thakur, N. Dhiman, A. Sharma, A.K. Gathania, J. Electron. Mater. 46, 2085–2089 (2017)

    CAS  ADS  Google Scholar 

  19. I. Kumar, A. Kumar, S. Kumar, H. Thakur, N. Dhiman, A.K. Gathania, Ceram. Int. 49, 36979–36987 (2023)

    CAS  Google Scholar 

  20. R.L. Tranquilin, L.X. Lovisa, C.R.R. Almeida, C.A. Paskocimas, M.S. Li, M.C. Oliveira, L. Gracia, J. Andres, E. Longo, F.V. Motta, M.R.D. Bomio, J. Phys. Chem. C 123, 18536–18550 (2019)

    CAS  Google Scholar 

  21. R. Shi, G. Liu, H. Liang, Y. Huang, Y. Tao, J. Zhang, Inorg. Chem. 55, 7777–7786 (2016)

    CAS  PubMed  Google Scholar 

  22. M. Shang, S. Liang, H. Lian, J. Lin, Inorg. Chem. 56, 6131–6140 (2017)

    CAS  PubMed  Google Scholar 

  23. B. Chen, X. Qiao, D. Peng, X. Fan, J. Phys. Chem. C 118, 30197–30201 (2014)

    CAS  Google Scholar 

  24. G.A. Sotiriou, M. Schneider, S.E. Pratsinis, J. Phys. Chem. C 115, 1084–1089 (2011)

    CAS  Google Scholar 

  25. X. Liu, Z. Xu, C. Chen, D. Tian, L. Yang, X. Luo, A.A.A. Kheraif, J. Lin, J. Mater. Chem. C 7, 2361–2375 (2019)

    CAS  Google Scholar 

  26. S. Xu, D. Zhu, D. Gong, F. Wu, H. Dong, Z. Mu, Opt. Mater. 143, 114239 (2023)

    CAS  Google Scholar 

  27. Y.H. Kim, N.S.M. Viswanath, S. Unithrattil, H.J. Kim, W.B. Im, ECS J. Solid State Sci. Technol. 7, R3134–R3147 (2018)

    CAS  Google Scholar 

  28. X. Zhang, J. Li, Y. Shu, K. Luo, H. Liu, P. Zhang, Y. Huang, G. Liu, Y. Fan, J. Lumin. 252, 119305 (2022)

    CAS  Google Scholar 

  29. L. Xie, X. Qu, B. Peng, Physica B 665, 415019 (2023)

    CAS  Google Scholar 

  30. S. Bishnoi, N. Lohia, D. Rehani, S. Mehra, R. Datt, G. Gupta, D. Haranath, S. Sharma, Optik. 203, 164015 (2020)

    CAS  ADS  Google Scholar 

  31. M.E. Álvarez-Ramos, F. Félix-Domínguez, R.C. Carrillo-Torres, G. Saavedra-Rodríguez, Spectrochim. Acta Part A 288, 122136 (2023)

    Google Scholar 

  32. B. Liu, Z. Zhu, J. Non-cryst. Solids. 609, 122265 (2023)

    CAS  Google Scholar 

  33. B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang, F. Wang, R. Deng, X. Liu, Chem. Rev. 122, 5519–5603 (2022)

    CAS  PubMed  Google Scholar 

  34. D. Wang, J. Fan, M. Shang, K. Li, Y. Zhang, H. Lian, J. Lin, Opt. Mater. 51, 162–170 (2016)

    CAS  ADS  Google Scholar 

  35. Y. Yao, Z. Zhou, J. Lumin. 179, 408–412 (2016)

    CAS  Google Scholar 

  36. J. Zhang, Y. Wang, Z. Zhang, Z. Wang, B. Liu, Mater. Lett. 62, 202–205 (2008)

    CAS  Google Scholar 

  37. Z. Hao, J. Zhang, X. Zhang, S. Lu, X. Wang, J. Electrochem. Soc. 156, H193 (2009)

    CAS  Google Scholar 

  38. I. Kumar, A. Kumar, A.K. Gathania, Mater. Chem. Phys. 292, 126846 (2022)

    CAS  Google Scholar 

  39. F. Li, H. Liu, S. Wei, W. Sun, L. Yu, J. Rare Earths. 31, 1063–1068 (2013)

    CAS  Google Scholar 

  40. H. Xiong, J. Dong, J. Yang, Y. Liu, H. Song, S. Gan, RSC Adv. 6, 98208–98215 (2016)

    CAS  ADS  Google Scholar 

  41. N. Saad, M. Haouari, M. Ibrahim, N. Amamou, J. Non-cryst. Solids. 623, 122678 (2024)

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Professor Guangyan Hong at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences for discussion.

Funding

This work was supported by Scientific Study Project for Colleges and Universities, Education Department of Liaoning Province, China (LJ201902).

Author information

Authors and Affiliations

Authors

Contributions

Yanhong Li contributed to Methodology, Writing of the manuscript, Investigation, Funding acquisition, Supervision, Project administration, and Resources. Xingao Zhang contributed to Experiment and Writing of the manuscript.

Corresponding author

Correspondence to Yanhong Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, X. Synthesis and efficient multicolor luminescence property of single-phase Eu3+ and Tb3+-doped Gd2(MoO4)3. J Mater Sci: Mater Electron 35, 447 (2024). https://doi.org/10.1007/s10854-024-12242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12242-y

Navigation