Skip to main content
Log in

Effect of P/B ratio on the thermal stability, soft magnetic properties and magnetostriction properties of Fe80B14−xPxSi5C1 amorphous alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work emphases on the effect of P/B ratio in Fe80B14−xPxSi5C1 (x = 0, 1, 2, & 3 at%) amorphous alloys on the thermal stability, soft magnetic characteristics, and magnetostriction properties. The addition of P in Fe80B14−xPxSi5C1 (x = 0, 1, 2, & 3 at%) amorphous alloys has a significant positive influence on the GFA. The addition of P element enhances the resistance to crystallization of amorphous alloys and broaden the optimal annealing temperatures range. The coercivity (Hc) of the Fe80B14−xPxSi5C1 (x = 0, 1, 2, & 3 at%) amorphous alloys is reduced from 15.6 to 9.03 A/m. The Fe80Si5B12C1P2 amorphous alloy exhibits excellent soft magnetic characteristics at the annealing temperature of 613 K for 3 min, with a Bs of 1.59 T and Hc of 3.8 A/m. Mössbauer spectroscopy have been used to investigate the origin of the variations in the Bs and Hc of the amorphous alloy after annealing. The saturation magnetostriction coefficient (λs) of Fe80B14−xPxSi5C1 (x = 0, 1, 2, & 3 at%) amorphous alloy decreases after P element doping and annealing treatment, which can be used to explain the change of Hc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Huo, G. Zhang, J. Han, J. Wang, S. Ma, H. Wang, A review of the Preparation, Machining Performance, and application of Fe-Based amorphous alloys. Processes. 10, 1203 (2022). https://doi.org/10.3390/pr10061203

    Article  CAS  Google Scholar 

  2. C. Suryanarayana, A. Inoue, Iron-based bulk metallic glasses. Int. Mater. Rev. 58, 131–166 (2013). https://doi.org/10.1179/1743280412Y.0000000007

    Article  CAS  Google Scholar 

  3. H.R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study. J. Non-Cryst Solids. 391, 61–82 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.03.010

    Article  CAS  ADS  Google Scholar 

  4. G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61, 718–734 (2013). https://doi.org/10.1016/j.actamat.2012.10.040

    Article  CAS  ADS  Google Scholar 

  5. X. Qi, J. You, J. Zhou, K. Qiu, X. Cui, J. Tian, B. Li, A review of Fe-Based amorphous and nanocrystalline alloys: preparations, applications, and effects of alloying elements. Phys. Status Solidi A 220, 2300079 (2023). https://doi.org/10.1002/pssa.202300079

    Article  CAS  ADS  Google Scholar 

  6. J. Zhou, J. You, J. Qiu K, Advances in Fe-based amorphous/nanocrystalline alloys. J. Appl. Physs. 132, 040702 (2022). https://doi.org/10.1063/5.0092662

    Article  CAS  ADS  Google Scholar 

  7. Q. Halim, Q. Mohamed, N.A.N. Rejab, M.R.T. Naim, W.N.W.A. Ma QJ, Metallic glass properties, processing method and development perspective: a review. Int. J. Adv. Manuf. Tech. 112, 1231–1258 (2021). https://doi.org/10.1007/s00170-020-06515-z

    Article  Google Scholar 

  8. F.C. Li, T. Liu, J.Y. Zhang, S. Shuang, S. Wang, Q. Wang, A.D. Wang, J.G. Yang Y, Amorphous-nanocrystalline alloys: fabrication, properties, and applications. Mater. Today Adv. 4, 10027 (2019). https://doi.org/10.1016/j.mtadv.2019.100027

    Article  Google Scholar 

  9. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world. Science. 362, eaao0195 (2018). https://doi.org/10.1126/science.aao0195

    Article  CAS  PubMed  Google Scholar 

  10. D. Chu, H. Lashgari, Y. Jiang, M. Ferry, K. Laws, S. Xie, H. Sun, S. Li, Recent progress in high Bs and low Hc Fe-based nanocrystalline alloys. Nanotechnol Rev. 3, 153–159 (2014). https://doi.org/10.1515/ntrev-2013-0030

    Article  CAS  Google Scholar 

  11. J.F. Zhou, X. Wang, J.H. You, J. Pang, X.Y. Li, K.Q. Qiu, Excellent soft magnetic properties and enhanced glass forming ability of Fe–Si–B-C-Cu nanocrystalline alloys. J. Alloy Compd. 918, 165538 (2022). https://doi.org/10.1016/j.jallcom.2022.165538

    Article  CAS  Google Scholar 

  12. X.S. Li, J. Zhou, L.Q. Shen, B.A. Sun, H.Y. Bai, W.H. Wang, Exceptionally High Saturation Magnetic Flux Density and Ultralow Coercivity via an Amorphous-Nanocrystalline Transitional Microstructure in an FeCo-Based Alloy. Adv Mater. (2022). https://doi.org/10.1002/adma.202205863

    Article  PubMed  PubMed Central  Google Scholar 

  13. H. Li, A.D. Wang, T. Liu, P.B. Chen, A.N. He, Q. Li, J.H. Luan, C.T. Liu, Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Mater. Today. 42, 49–56 (2021). https://doi.org/10.1016/j.mattod.2020.09.030

    Article  CAS  Google Scholar 

  14. Y. Zhang, P. Sharma, A. Makino, Effects of minor precipitation of large size crystals on magnetic properties of Fe-Co-Si-B-P-Cu alloy. J. Alloy Compd. 709, 663–667 (2017). https://doi.org/10.1016/j.jallcom.2017.03.193

    Article  CAS  Google Scholar 

  15. L. Xue, W.M. Yang, H.S. Liu, H. Men, A.D. Wang, C.T. Chang, B.L. Shen, Effect of Co addition on the magnetic properties and microstructure of FeNbBCu nanocrystalline alloys. J. Magn. Magn. Mater. 419, 198–201 (2016). https://doi.org/10.1016/j.jmmm.2016.06.020

    Article  CAS  ADS  Google Scholar 

  16. Y. Ogawa, M. Naoe, Y. Yoshizawa, R. Hasegawa, Magnetic properties of high Bs Fe-based amorphous material. J. Magn. Magn. Mater. 304, e675–e677 (2006). https://doi.org/10.1016/j.jmmm.2006.02.167

    Article  CAS  ADS  Google Scholar 

  17. A. Inoue, T. Zhang, T. Masumoto, Zr-Al-Ni Amorphous-Alloys with High Glass-Transition temperature and significant supercooled Liquid Region. Mater. Trans. 31, 7–183 (1990). https://doi.org/10.2320/matertrans1989.31.177

    Article  Google Scholar 

  18. A. Takeuchi, A. Inoue, Classification of Bulk Metallic glasses by Atomic size difference, heat of Mixing and Period of Constituent Elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005). https://doi.org/10.2320/matertrans.46.2817

    Article  CAS  Google Scholar 

  19. Q.A. He, Y.Q. Cheng, E. Ma, J.A. Xu, Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization. Acta Mater. 59, 202–215 (2011). https://doi.org/10.1016/j.actamat.2010.09.025

    Article  CAS  ADS  Google Scholar 

  20. A.D. Wang, C.L. Zhao, A.N. He, H. Men, C.T. Chang, X.M. Wang, Composition design of high Bs Fe-based amorphous alloys with good amorphous-forming ability. J. Alloy Compd. 656, 729–734 (2016). https://doi.org/10.1016/j.jallcom.2015.09.216

    Article  CAS  Google Scholar 

  21. X.F. Liang, A.N. He, A.D. Wang, J. Pang, C.J. Wang, C.T. Chang, K.Q. Qiu, X.M. Wang, C.T. Liu, Fe content dependence of magnetic properties and bending ductility of FeSiBPC amorphous alloy ribbons. J. Alloy Compd. 694, 1260–1264 (2017). https://doi.org/10.1016/j.jallcom.2016.10.107

    Article  CAS  Google Scholar 

  22. H.E. Kissinger, Reaction kinetics in Differential Thermal Analysis. Anal. Chem. 29, 1702–1706 (1957). https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  23. N. Kawamiya, K. Adachi, Y. Nakamura, Magnetic Properties and Mössabauer investigations of Fe-Ga alloys. J. Phys. Soc. Jpn. 33, 1318–1327 (1972). https://doi.org/10.1143/JPSJ.33.1318

    Article  CAS  ADS  Google Scholar 

  24. K. Narita, H. Fukunaga, J. Yamasaki, Effects of Metalloid Content on Curie temperature and magnetic moment of Amorphous Fe–Si–B Alloy. Jpn J. Appl. Phy. 16, 2063–2064 (1977). https://iopscience.iop.org/article/https://doi.org/10.1143/JJAP.16.2063

    Article  CAS  ADS  Google Scholar 

  25. F. Mazaleyrat, R. Barrué, Chap. 3 - soft amorphous and nanocrystalline magnetic materials. Handb. Adv. Electron. Photonic Mater. Devices. 6, 59–102 (2001). https://doi.org/10.1016/B978-012513745-4/50052-4

    Article  CAS  Google Scholar 

  26. H.X. Li, Z.B. Jiao, J.E. Gao, Z.P. Lu, Synthesis of bulk glassy Fe-C-Si-B-P-Ga alloys with high glass-forming ability and good soft-magnetic properties. Intermetallics. 18, 1821–1825 (2010). https://doi.org/10.1016/j.intermet.2010.01.021

    Article  CAS  Google Scholar 

  27. T. Bitoh, A. Makino, A. Inoue, Quasi-dislocation dipole-type defects and low coercivity of Fe-based soft magnetic glassy alloys. J. Metastable Nanocryst. Mater. (2015). https://doi.org/10.4028/www.scientific.net/JMNM.24-25.427

    Article  Google Scholar 

  28. A.D. Wang, C.L. Zhao, H. Men, A.N. He, C.T. Chang, X.M. Wang, R.W. Li, Fe-based amorphous alloys for wide ribbon production with high Bs and outstanding amorphous forming ability. J. Alloy Compd. 630, 209–213 (2015). https://doi.org/10.1016/j.jallcom.2015.01.056

    Article  CAS  Google Scholar 

  29. T. Bitoh, A. Makino, A. Inoue, Origin of Low Coercivity of Fe-(Al, Ga)-(P, C, B, Si, Ge) Bulk Glassy alloys. Mater. Trans. 44, 2020–2024 (2003). https://doi.org/10.2320/matertrans.44.2020

    Article  CAS  Google Scholar 

  30. C.C. Cao, L. Zhu, Y. Meng, X.B. Zhai, Y.G. Wang, Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy. J. Magn. Magn. Mater. 456, 274–280 (2018). https://doi.org/10.1016/j.jmmm.2018.02.043

    Article  CAS  ADS  Google Scholar 

  31. J. Xu, Y.Z. Yang, Q.S. Yan, C.F. Fan, F.T. Hou, Z.W. Xie, Effect of microalloying on crystallization behavior, magnetic properties and bending ductility of high Fe content FeSiBCuPC alloys. J. Alloy Compd. 777, 499–505 (2019). https://doi.org/10.1016/j.jallcom.2018.11.029

    Article  CAS  Google Scholar 

  32. J. Dai, Y.G. Wang, L. Yang, G.T. Xia, Q.S. Zeng, H.B. Lou, Structural aspects of magnetic softening in Fe-based metallic glass during annealing. Scripta Mater. 127, 88–91 (2017). https://doi.org/10.1016/j.scriptamat.2016.09.006

    Article  CAS  Google Scholar 

  33. J.S. Blázquez, J. Marcin, F. Andrejka, V. Franco, A. Conde, I. Skorvanek, Anisotropy field distribution in soft magnetic hitperm alloys submitted to different field annealing processes. J. Alloy Compd. 658, 367–371 (2016). https://doi.org/10.1016/j.jallcom.2015.10.210

    Article  CAS  Google Scholar 

  34. H. Li, A.N. He, A.D. Wang, L. Xie, Q. Li, C.L. Zhao, G.Y. Zhang, P.B. Chen, Improvement of soft magnetic properties for distinctly high Fe content amorphous alloys via longitudinal magnetic field annealing. J. Magn. Magn. Mater. 471, 110–115 (2019). https://doi.org/10.1016/j.jmmm.2018.09.072

    Article  CAS  ADS  Google Scholar 

  35. L. Wang, Y.Q. Zhang, Y. Jin, Y.H. Zhang, S.Y. Chao, Study of magnetostrictive coefficient of Fe-based amorphous alloys. J. Funct. Mater. 21, 21085–21088 (2014)

    Google Scholar 

  36. Z.Z. Yang, L. Zhu, L.X. Ye, X. Gao, S.S. Jiang, H. Yang, Y.G. Wang, Nanoscale structural heterogeneity perspective on the improved magnetic properties during relaxation in a Fe-based metallic glass. J. Non-Cryst Solids. 571, 121078 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121078

    Article  CAS  Google Scholar 

  37. Q.H. Xu, S.S. Jiang, F.G. Chen, A. Jain, Y. Lin, Y.G. Wang, Effect of Zr/B ratio on β relaxation, structural heterogeneity, and magnetic properties of Fe-Zr-B amorphous alloys. J. Non-Cryst Solids. 594, 121822 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121822

    Article  CAS  Google Scholar 

  38. J.V. Kasiuk, J.A. Fedotova, J. Przewoznik, J. Zukrowski, M. Sikora, C. Kapusta, A. Grce, A. Milosavljević, Growth-induced non-planar magnetic anisotropy in FeCoZr-CaF2 nanogranular films: structural and magnetic characterization. J. Appl. Phys. 116, 044301 (2014). https://doi.org/10.1063/1.4891016

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Q. Yan: Conceptualization, investigation, Writing—original draft, formal analysis. L.L. Lu: Investigation, Writing—review & editing. F.G. Chen: Investigation, visualization. Aditya Jain: Investigation, Writing—review & editing. Y.G. Wang: Supervision, validation, Writing—review & editing.

Corresponding author

Correspondence to Y. G. Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Lu, L.L., Chen, F.G. et al. Effect of P/B ratio on the thermal stability, soft magnetic properties and magnetostriction properties of Fe80B14−xPxSi5C1 amorphous alloys. J Mater Sci: Mater Electron 35, 418 (2024). https://doi.org/10.1007/s10854-024-12236-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12236-w

Navigation