Skip to main content
Log in

Studies on electrochemical properties of ZnO/CuMn2O4 NCs as electrode material for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current study involved a two-step process to create nanocomposites (NCs) of Zinc oxide (ZnO)/Copper manganite (CuMn2O4). Pure ZnO, CuMn2O4 nanoparticles, and ZnO/CuMn2O4 NCs were synthesized through co-precipitation and hydrothermal techniques. The Power X-ray Diffraction (PXRD) pattern indicates the existence of hexagonal wurtzite and spinel cubic phase structures of ZnO and CuMn2O4 in ZnO/CuMn2O4NCs. The appearance of three peaks at 542 cm−1, 634 cm−1, and 439 cm−1 in ZnO/CuMn2O4 NCs can be attributed to the stretching and bending vibration bands of Mn–O, Cu–O, and Zn–O metal oxides as revealed by the FTIR studies. FESEM analysis revealed that the ZnO, CuMn2O4 and ZnO/CuMn2O4 NCs had a spherical morphology, while EDAX analysis identified the elemental composition of Zn, Cu, Mn, and O in the prepared materials. Cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements were used to investigate the electrochemical performance of the prepared material. According to the electrochemical findings, the ZnO/CuMn2O4 electrode exhibited Faradic behavior similar to that of a battery, and at a current density of 0.4 Ag−1 in a 2 M KOH electrolyte, it recorded the highest specific capacitance value of 562.36 Fg−1 compared to ZnO and CuMn2O4. Based on the observed results, prepared ZnO/CuMn2O4 NCs are well suited for ultrafast redox kinetics due to their improved ionic conductivity and electrochemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing and data citation are encouraged and the datasets generated during and/or analyzed during the current study are included within the article and its additional files

References

  1. J. Lv, J. Xie, A.G.A. Mohamed, X. Zhang et al., Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 51, 1511–1528 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. M. Ramzan, S.A. Raza, M. Usman et al., Environmental cost of non-renewable energy and economic progress: do ICT and financial development mitigate some burden? J. Clean. Prod. 333, 130066 (2022)

    Article  CAS  Google Scholar 

  3. M.S. Javed, N. Shaheen, S. Hussain et al., An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. J. Mater. Chem. A 7, 946–957 (2019)

    Article  CAS  Google Scholar 

  4. C.K. Sim, S.R. Majid, N.Z. Mahmood, Durable porous carbon/ZnMn2O4 composite electrode material for supercapacitor. J. Alloys Comp. 803, 424–433 (2019)

    Article  CAS  Google Scholar 

  5. T. Huang, Y. Jiang, G. Shen et al., Recent advances of two-dimensional nanomaterials for Electrochemical Capacitors. Chem. Sus Chem. 13, 1093–1113 (2020)

    Article  CAS  Google Scholar 

  6. X. Song, S. Song, D. Wang et al., Prussian blue analogs and their derived nanomaterials for electrochemical energy storage and electrocatalysis. Small Methods. 5, 2001000 (2021)

    Article  CAS  Google Scholar 

  7. Z. Zhai, W. Yan, L. Dong et al., Multi-dimensional materials with layered structures for supercapacitors: advanced synthesis, supercapacitor performance and functional mechanism. Nano Energy. 78, 105193 (2020)

    Article  CAS  Google Scholar 

  8. P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energy Rev. 3, 155–186 (2020)

    CAS  Google Scholar 

  9. G. Zhang, X. Xiao, B. Li et al., Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 5, 8155–8186 (2017)

    Article  CAS  Google Scholar 

  10. C. Yuan, H.B. Wu, Y. Xie et al., Mixed transition-metal oxides: design, synthesis, and energy‐related applications. Angew. Chem. Int. Ed. 53, 1488–1504 (2014)

    Article  CAS  Google Scholar 

  11. S. Yada, A. Sharma, Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials. J. Energy Storage. 44, 103295 (2021)

    Article  Google Scholar 

  12. M. Murugesan, N. Nallamuthu, R. Ranjithkumar, Krishnakumar et al., Synthesis and Electrochemical Investigation of Hetero Bimetallic Complexes CoMn2O4 Micro rods for Novel Supercapacitor Electrode. Electron. Mater. Lett. 19, 108–118 (2023)

    Article  CAS  Google Scholar 

  13. S. Dek, Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Dalton Trans. 52, 839–856 (2023)

    Article  Google Scholar 

  14. T. Wang, H.C. Chen, F. Yu et al., Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019)

    Article  Google Scholar 

  15. T. Prasankumar, J. Vigneshwaran, M. Bagavathi et al., Expeditious and eco-friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors. J. Alloys Comp. 834, 155060 (2020)

    Article  CAS  Google Scholar 

  16. M.P. Mani, V. Venkatachalam, K. Thamizharasan et al., Evaluation of Cubic-Like Advanced ZnMn2O4 Electrode for High-Performance Supercapacitor Applications. J. Electron. Mater. 50, 4381–4387 (2021)

    Article  CAS  Google Scholar 

  17. P. Nagaraja, V. Pamidi, E. Umeshbabu et al., Surfactant-assisted hydrothermal synthesis of CoMn2O4 nanostructures for efficient supercapacitors. J. Solid State Electrochem. 27, 785–796 (2023)

    Article  CAS  Google Scholar 

  18. K. Surya, M.S. Michael, Pseudocapacitive binary metal oxide NiMn2O4 nanoparticles as an electrode for high-powered hybrid supercapacitors. J. Mater. Sci: Mater. Electron. 33, 3139–3150 (2022)

    CAS  Google Scholar 

  19. S. Aouini, A. Bardaoui, D.M. Santos et al., Hydrothermal synthesis of CuMn2O4 spinel-coated stainless steel mesh as a supercapacitor electrode. J. Mater. Sci: Mater. Electron. 33, 12726–12733 (2022)

    CAS  Google Scholar 

  20. T. Sumithra, C.L. Pearline, M.J. Abel et al., Studies on structural and optical behavior of SnO2/CuMn2O4 nanocomposite developed via two-step approach for photocatalytic activity. Mater. Res. Exp. 6, 115047 (2019)

    Article  CAS  Google Scholar 

  21. L. Li, G. Jiang, J. Ma, CuMn2O4/graphene nanosheets as excellent anode for lithium-ion battery. Mater. Res. Bull. 104, 53–59 (2018)

    Article  CAS  Google Scholar 

  22. C. Lydia Pearline, M. John Abel, A. Pramothkumar, N. Senthilkumar, P. Anbalagan, J.J. Prince, Investigation on structural, optical and electrochemical behavior of NiO/ZnMn2O4 ternary nanocomposites via two-step synthesis approach for supercapacitor application. Chem. Pap. 75, 641–651 (2021)

    Article  Google Scholar 

  23. J.H. Zheng, R.M. Zhang, X.G. Wang, P.F. Yu, Synthesizing a flower-like NiO and ZnO composite for supercapacitor applications. Res. Chem. Intermed. 44, 5569–5582 (2018)

    Article  CAS  Google Scholar 

  24. B. Saravanakumar, S.M. Lakshmi, G. Ravi et al., Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J. Alloys Comp. 723, 115–122 (2017)

    Article  CAS  Google Scholar 

  25. N. Senthilkumar, E. Nandhakumar, P. Priya et al., Green and sustainable preparation of flower-like ZnO nanostructures via soft bio-template approach for the enhancement of biomedical applications. Appl. Phys. A 128, 78 (2022)

    Article  CAS  Google Scholar 

  26. M. Chennimalai, T.S. Senthil, M. Kang et al., A novel green-mediated approach of 3-D hierarchical-like ZnO@Ag, ZnO@Au and ZnO@Ag@Au NCs prepared via Opuntia ficus indica fruits extract for enhancement of biological activities. Appl. Phys. A 127, 611 (2021)

    Article  CAS  Google Scholar 

  27. A. Pramothkumar, N. Senthilkumar, S. Pitchaiya et al., Perovskite solar cells: investigation of structural, optical and device performance analysis of Al–Sn co-doped ZnO electron transport layer. J. Mater. Sci: Mater. Electron. 34, 627 (2023)

    CAS  Google Scholar 

  28. M. Sangeetha, T.S. Senthil, N. Senthilkumar et al., Solar-light-induced photocatalyst based on Bi–B co-doped TiO2 prepared via co-precipitation method. J. Mater. Sci: Mater. Electron. 33, 16550–16563 (2022)

    CAS  Google Scholar 

  29. K. Mubeen, A. Irshad, A. Safeen, U. Aziz, K. Safeen, T. Ghani, K. Khan, Z. Ali, I. Haq, A. Shah, Band structure tuning of ZnO/CuO composites for enhanced photocatalytic activity. J. Saudi Chem. Soc. 27, 101639 (2023)

    Article  CAS  Google Scholar 

  30. M.R. Alotaibi, Synthesis and characterization of copper manganate-decorated zirconium dioxide nanoparticles and its photocatalytic application. Appl. Nanosci. 13, 5579–5588 (2023)

    Article  CAS  Google Scholar 

  31. N. Senthilkumar, V. Venkatachalam, M. Kandiban et al., Studies on electrochemical properties of hetarolite (ZnMn2O4) nanostructure for supercapacitor application. Phys. E. 106, 121–126 (2019)

    Article  CAS  Google Scholar 

  32. V. Kumari, S. Yadav, J. Jindal et al., Synthesis and characterization of heterogeneous ZnO/CuO hierarchical nanostructures for photocatalytic degradation of organic pollutant. Adv. Powder Technol. 31, 2658–2668 (2020)

    Article  CAS  Google Scholar 

  33. T.A. Sandosh, A. Simi et al., Morphology controlled synthesis of one-dimensional CoMn2O4 nanorods for high-performance supercapacitor electrode application. Chem. Pap. 75, 2295–2304 (2021)

    Article  CAS  Google Scholar 

  34. P.E. Saranya, S. Selladurai, Efficient electrochemical performance of ZnMn2O4 nanoparticles with rGO nanosheets for electrodes in supercapacitor applications. J. Mater. Sci: Mater. Electron. 29, 3326–3339 (2018)

    CAS  Google Scholar 

  35. L. Ren, J. Chen, X. Wang et al., Facile synthesis of flower-like CoMn2O4 microspheres for electrochemical supercapacitors. RSC Adv. 5, 30963–30969 (2015)

    Article  CAS  Google Scholar 

  36. M. Sethi, D.K. Bhat, Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods. J. Alloys Compd. 781, 1013–1020 (2019)

    Article  CAS  Google Scholar 

  37. P. Mandal, U.K. Ghorui, A. Mondal, D. Banerjee, Photoelectrochemical performance of tin selenide (SnSe) thin films prepared by two different techniques. Electron. Mater. Lett. 18, 381–390 (2022)

    Article  CAS  Google Scholar 

  38. S. Aouini, A. Bardaoui, A.M. Ferraria et al., ZnMn2O4 nanopyramids fabrication by Hydrothermal Route: effect of reaction time on the Structural, Morphological, and Electrochemical properties. Energies. 15, 9352 (2022)

    Article  CAS  Google Scholar 

  39. T. Prasankumar, J. Vigneshwaran, M. Bagavathi et al., Expeditious and eco-friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors. J. Alloys Compd. 834, 155060 (2020)

    Article  CAS  Google Scholar 

  40. C. Zhang, A. Xie, W. Zhang et al., CuMn2O4 spinel anchored on graphene nanosheets as a novel electrode material for supercapacitor. J. Energy Storage. 34, 102181 (2021)

    Article  Google Scholar 

  41. B. Saravanakumar, G. Ravi, V. Ganesh et al., MnCo2O4 nanosphere synthesis for electrochemical applications. Mater. Sci. Energy Technol. 2, 130–138 (2019)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KA (First & Corresponding author): Investigation, Writing—original draft & supervision, AS: Methodology, conceptualization, Writing—Review & editing, SM: Validation & formal analysis, TRC:  Writing—Review & editing, conceptualization, software. All authors commented on the previous version of the manuscript and after reading it they have approved the final manuscript.

Corresponding author

Correspondence to K. Ambujam.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest. Authors are requested to disclose interests that are directly related to the work submitted for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambujam, K., Sridevi, A., Meivel, S. et al. Studies on electrochemical properties of ZnO/CuMn2O4 NCs as electrode material for supercapacitor application. J Mater Sci: Mater Electron 35, 578 (2024). https://doi.org/10.1007/s10854-024-12228-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12228-w

Navigation