Skip to main content
Log in

Spinel-structured hollow nanospheres prepared by a soft-template solvothermal method for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi-element transition-metal oxides have attracted much attention in the field of energy storage due to their excellent specific capacitance and multiplicity. Herein, Ni0.5Mn0.5Co2O4 hollow electrode materials were prepared by a novel solvothermal method using polyvinylpyrrolidone (PVP) as a soft template, followed by a subsequent annealing treatment. The materials were characterized by XRD, XPS, SEM, TEM, and BET, and their supercapacitor properties were tested on an electrochemical workstation. The unique hollow structure of Ni0.5Mn0.5Co2O4 can act as a “charge reservoir” for exposing more active sites and increases its specific surface area to 74.67 m2·g−1. In the three-electrode system, the electrode material of Ni0.5Mn0.5Co2O4 exhibits a high specific capacitance (2952.5 F·g−1 at 1 A·g−1 and 540 F·g−1 at 15 A·g−1). Meanwhile, the electrode material still possesses 80.8% of the original capacitance after 3000 cycles at a current density of 15 A·g−1, demonstrating good cycling stability. Finally, the electrode material was assembled with activated carbon to form an asymmetric supercapacitor (ASC). The electrochemical performance of the ASC device tested in the two-electrode system exhibited an energy density of 118.2 Wh·kg−1 when the power density was 1428 W·kg−1. In addition, the ASC device could light up a small light bulb. The redox reaction kinetics was controlled by both diffusion and capacitive behaviors. With increasing scanning rate, the capacitive contribution gradually dominated the kinetics. The electrode material of Ni0.5Mn0.5Co2O4 offers possibilities for actual applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. The data used or analyzed are available from the corresponding author on reasonable request.

References

  1. B. Dunn, H. Kamath, J.M. Tarascon, Science (2011). https://doi.org/10.1126/science.1212741

    Article  PubMed  Google Scholar 

  2. F.M. Hassan, R. Batmaz, J.D. Li, X.L. Wang, X.C. Xiao, A.P. Yu, Z.W. Chen, Nat. Commun. (2015). https://doi.org/10.1038/ncomms9597

    Article  PubMed  Google Scholar 

  3. X.L. Wang, G. Li, M.H. Seo, G. Lui, F.M. Hassam, K. Feng, X.C. Xiao, Z.W. Chen, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.6b12080

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. Zinatloo-Ajabshir, M.H. Esfahani, C.A. Marjerrison, J. Greedan, M. Behzad, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.09.067

    Article  Google Scholar 

  5. M.H. Esfahani, S. Zinatloo-Ajabshir, H. Naji, C.A. Marjerrison, J.E. Greedan, M. Behzad, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2022.08.338

    Article  Google Scholar 

  6. X.L. Wang, G. Li, J.D. Li, Y.N. Zhang, A. Wook, A.P. Yu, Z.W. Chen, Energy Environ. Sci. (2016). https://doi.org/10.1039/c6ee00194g

    Article  Google Scholar 

  7. X.L. Wang, G. Li, M.H. Seo, F.M. Hassan, M.A. Hoque, Z.W. Chen, Adv. Energy Mater. (2015). https://doi.org/10.1002/aenm.201501106

    Article  Google Scholar 

  8. X. Yang, K.Y. Shi, I. Zhitomirsky, E.D. Cranston, Adv. Mater. (2015). https://doi.org/10.1002/adma.201502284

    Article  PubMed  PubMed Central  Google Scholar 

  9. D. Yan, W. Wang, X. Luo, C. Chen, Y. Zeng, Z.H. Zhu, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2017.10.128

    Article  Google Scholar 

  10. S.B. Wang, J. Pu, Y. Tong, Y.Y. Cheng, Y. Gao, Z.H. Wang, J. Mater. Chem. A. (2014). https://doi.org/10.1039/c3ta14941b

    Article  Google Scholar 

  11. K. Zeng, W. Li, Y. Zhou, Z.H. Sun, C.Y. Lu, J. Yan, J.H. Choi, R.Z. Yang, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127831

    Article  PubMed  PubMed Central  Google Scholar 

  12. K.W. Qiu, M. Lu, Y.S. Luo, X.W. Du, J. Mater. Chem. A (2017). https://doi.org/10.1039/c7ta00506g

    Article  Google Scholar 

  13. X.H. Xia, J.P. Tu, Y.Q. Zhang, X.L. Wang, C.D. Gu, X.B. Zhao, H.J. Fan, ACS Nano (2012). https://doi.org/10.1021/nn301454q

    Article  PubMed  PubMed Central  Google Scholar 

  14. S.Y. Wang, B. Pei, X.S. Zhao, R.A.W. Dryfe, Nano Energy (2013). https://doi.org/10.1016/j.nanoen.2012.12.005

    Article  Google Scholar 

  15. G.Q. Zhang, X.W. Lou, Adv. Mater. (2013). https://doi.org/10.1002/adma.201204128

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. B. Senthilkumar, D. Meyrick, Y.S. Lee, R.K. Selvan, RSC Adv. (2013). https://doi.org/10.1039/C2TA00163B

    Article  Google Scholar 

  17. R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, ACS Nano (2015). https://doi.org/10.1021/acsnano.5b01790

    Article  PubMed  Google Scholar 

  18. L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Nat. Commun. (2011). https://doi.org/10.1038/ncomms1387

    Article  PubMed  Google Scholar 

  19. Y. Zhao, L.F. Hu, S.Y. Zhao, L.M. Wu, Adv. Funct. Mater. (2016). https://doi.org/10.1002/adfm.201600494

    Article  PubMed  PubMed Central  Google Scholar 

  20. B.B. Cheng, W. Zhang, M. Yang, Y.J. Zhang, F.B. Meng, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.07.022

    Article  Google Scholar 

  21. X.J. Zhang, W.H. Shi, J.X. Zhu, W.Y. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y.H. Yang, H. Zhang, H.H. Hng, Q.Y. Yan, Nano Res. (2010). https://doi.org/10.1007/s12274-010-0024-6

    Article  Google Scholar 

  22. S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, J.H. Jang, ACS Appl. Mater. Interface (2013). https://doi.org/10.1021/am3021894

    Article  Google Scholar 

  23. J.H. Zhu, J.A. Jiang, J.P. Liu, R.M. Ding, H. Ding, Y.M. Feng, G.M. Wei, X.T. Huang, J. Solid State Chem. (2011). https://doi.org/10.1016/j.jssc.2011.01.019

    Article  Google Scholar 

  24. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, N. Manyala, J. Mater. Sci. (2013). https://doi.org/10.1007/s10853-013-7471-x

    Article  Google Scholar 

  25. D.F. Yang, B.H. Xu, Q.L. Zhao, X.S. Zhao, J. Mater. Chem. A (2019). https://doi.org/10.1039/c8ta09188a

    Article  Google Scholar 

  26. G.L. Yu, W.R. Wang, C. Jiang, J. Lumin. (2021). https://doi.org/10.1016/j.jlumin.2021.118061

    Article  Google Scholar 

  27. G. Sun, X.C. Yin, W. Yang, J.N. Zhang, Q.H. Du, Z.P. Ma, G.J. Shao, Z.B. Wang, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.03.175

    Article  PubMed  PubMed Central  Google Scholar 

  28. S.C. Sekhar, B. Ramulu, S.J. Arbaz, S.K. Hussain, J.S. Yu, Small Methods (2021). https://doi.org/10.1002/smtd.202100335

    Article  PubMed  Google Scholar 

  29. W.L. Yang, Z. Gao, J. Ma, X.M. Zhang, J. Wang, J.Y. Liu, J. Mater. Chem. A (2014). https://doi.org/10.1039/c3ta14488g

    Article  Google Scholar 

  30. X.J. Liu, J.F. Liu, Y.P. Li, Y.J. Li, X.M. Sun, ChemCatChem (2014). https://doi.org/10.1002/cctc.201402217

    Article  Google Scholar 

  31. Y. Lei, J. Li, Y.Y. Wang, L. Gu, Y.F. Chang, H.Y. Yuan, D. Xiao, ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am404765y

    Article  PubMed  Google Scholar 

  32. J.Y. Liao, D. Higgins, G. Lui, V. Chabot, X.C. Xiao, Z.W. Chen, Nano Lett. (2013). https://doi.org/10.1021/nl4030159

    Article  PubMed  Google Scholar 

  33. S.H. Cui, L.P. Sun, F.H. Kong, L.H. Huo, H. Zhao, J. Power. Sources (2019). https://doi.org/10.1016/j.jpowsour.2019.05.029

    Article  Google Scholar 

  34. T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sukha, P. Sirisinudomkit, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul, M. Sawangphruk, ACS Appl. Mater. Interface (2016). https://doi.org/10.1021/acsami.6b09440

    Article  Google Scholar 

  35. J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Nano Lett. (2014). https://doi.org/10.1021/nl404199v

    Article  PubMed  Google Scholar 

  36. P. Hao, J. Tian, Y.H. Sang, C.C. Tuan, G.W. Cui, X.F. Shi, C.P. Wong, B. Tang, H. Liu, Nanoscale (2016). https://doi.org/10.1039/c6nr05385h

    Article  PubMed  PubMed Central  Google Scholar 

  37. H. Xia, D.D. Zhu, Z.T. Luo, Y. Yu, X.Q. Shi, G.L. Yuan, J.P. Xie, Sci. Rep. (2013). https://doi.org/10.1038/srep02978

    Article  PubMed  PubMed Central  Google Scholar 

  38. D.B. Yu, B. Wu, L. Ge, L. Wu, H.T. Wang, T.W. Xu, J. Mater. Chem. A (2016). https://doi.org/10.1039/c6ta04286d

    Article  Google Scholar 

  39. Q.Y. Gao, X.Q. Wang, Z.Y. Shi, Z.R. Ye, W.C. Wang, N. Zhang, Z.L. Hong, M.J. Zhi, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2017.08.067

    Article  PubMed  Google Scholar 

  40. W. Xiong, X. Hu, X. Wu, Y. Zeng, B. Wang, G.H. He, Z.H. Zhu, J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta04201a

    Article  Google Scholar 

  41. G.H. Yu, X. Xie, L.J. Pan, Z.N. Bao, Y. Cui, Nano Energy (2013). https://doi.org/10.1016/j.nanoen.2012.10.006

    Article  Google Scholar 

  42. H.H. Xiao, S.Y. Yao, H.D. Liu, F.Y. Qu, X. Zhang, X. Wu, Prog. Mater. Sci. (2016). https://doi.org/10.1016/j.pnsc.2016.05.007

    Article  Google Scholar 

  43. K.B. Xu, S.J. Li, J.M. Yang, J.Q. Hu, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2017.11.052

    Article  PubMed  Google Scholar 

  44. Y. Lu, Y.B. Liu, J.M. Mo, B.L. Deng, J.X. Wang, Y.Q. Zhu, X.D. Xiao, G. Xu, J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157271

    Article  Google Scholar 

  45. X. Zhao, M. Zhang, H. Li, W. Pan, Z.T. Luo, X.D. Sun, Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.154062

    Article  Google Scholar 

  46. K.B. Xu, J.M. Yang, J.Q. Hu, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2017.09.113

    Article  PubMed  Google Scholar 

  47. Y.J. Zheng, Z.Q. Lin, W.J. Chen, B.H. Liang, H.W. Du, R.L. Yang, X.F. He, Z.K. Tang, X.C. Gui, J. Mater. Chem. A (2017). https://doi.org/10.1039/c7ta00491e

    Article  Google Scholar 

  48. X. Wu, Z.C. Han, X. Zheng, S.Y. Yao, X. Yang, T.Y. Zhai, Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2016.11.035

    Article  Google Scholar 

  49. S.D. Li, J.C. Fan, G.C. Xiao, S.Q. Gao, K.X. Cui, Z.H. Wang, C.Q. Niu, W.B. Luo, Z.S. Chao, J. Colloid Interface Sci. (2022). https://doi.org/10.1016/j.jcis.2022.07.126

    Article  PubMed  PubMed Central  Google Scholar 

  50. J.W. Li, D.B. Xiong, L.Z. Wang, M.K.S. Hirbod, X.F. Li, J. Energy Chem. (2019). https://doi.org/10.1016/j.jechem.2018.11.015

    Article  Google Scholar 

  51. B. Mazinani, M. Kazazi, G. Mobarhan, M. Shokouhimehr, JOM. Miner. Met. Mater. Ser. (2019). https://doi.org/10.1007/s11837-019-03387-x

    Article  Google Scholar 

  52. P.S. Shukla, A. Agrawal, A. Gaur, G.D. Varma, J. Energy Storage (2023). https://doi.org/10.1016/j.est.2023.109229

    Article  Google Scholar 

  53. W.Z. Feng, W.H. Pu, Y.P. Zheng, H.Y. Wu, L.L. Li, X. Wei, Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.153908

    Article  Google Scholar 

  54. J. González, E. Laborda, A. Molina, J. Chem. Educ. (2023). https://doi.org/10.1021/acs.jchemed.2c00944

    Article  PubMed  Google Scholar 

  55. D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen, X.X. Liu, X.H. Xia, Y.L. Zhao, S.V. Savilov, J.Y. Lin, Z.X. Shen, ACS Nano (2016). https://doi.org/10.1021/acsnano.6b05566

    Article  PubMed  Google Scholar 

  56. J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C (2007). https://doi.org/10.1021/jp074464w

    Article  Google Scholar 

  57. L.P. Kong, C.F. Zhang, J.T. Wang, W.M. Qiao, L.C. Ling, D.H. Long, ACS Nano (2015). https://doi.org/10.1021/acsnano.5b04737

    Article  PubMed  PubMed Central  Google Scholar 

  58. R. Ding, L. Qi, M. Jia, H.J.E.A. Wang, Electrochim. Acta (2013). https://doi.org/10.1016/j.electacta.2013.05.11

    Article  Google Scholar 

  59. X. Wang, W.S. Liu, X.H. Lu, P.S. Lee, J. Mater. Chem. B (2012). https://doi.org/10.1039/c2jm35307e

    Article  PubMed  PubMed Central  Google Scholar 

  60. Y.R. Zhu, Z.B. Wu, M.J. Jing, H.S. Hou, Y.C. Yang, Y. Zhang, X.M. Yang, W.X. Song, X.N. Jia, X.B. Ji, J. Mater. Chem. A (2015). https://doi.org/10.1039/c4ta05507a

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fang Song at Instrument Analysis Center of Xi’an University of Architecture and Technology for the assistance with FE-SEM measurement.

Funding

The work was supported by National Natural Science Foundation of China under Grant No. 52271189.

Author information

Authors and Affiliations

Authors

Contributions

Feng Zuo: Writing-Original draft, Huidong Xie: Writing—Review and Editing, Supervision, Jiamin Gao: Experimental design, Kang Chen: Experimental design, Hu Liu: Funding acquisition, Yajuan Zhao: Resources, Chang Yang: Resources.

Corresponding author

Correspondence to Huidong Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest exits in this manuscript.

Ethical approval

The authors declare no human tissue is used in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, F., Xie, H., Gao, J. et al. Spinel-structured hollow nanospheres prepared by a soft-template solvothermal method for high-performance supercapacitors. J Mater Sci: Mater Electron 35, 416 (2024). https://doi.org/10.1007/s10854-024-12216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12216-0

Navigation