Skip to main content
Log in

Development of low band gap layered Bi6FeNiTi3O18 aurivillius phase ceramics for ferroelectric memory and cathode for lithium-oxygen batteries applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The layered multiferroic perovskite oxides are excellent functional materials for ferroelectric memory applications and also show application potential for cathode materials in lithium-oxygen battery due to high surface area, good stability, easy processing and low price. Synthesis of uniformly distributed layered perovskite oxides with low band gap, ionic-conducting and ferroelctric nature is still challenging. In this work, we have synthesized a new single-phase aurivillius phase Bi6FeNiTi3O18 ceramics by high-energy ball mill mechano-chemical reaction. The Rietveld refinement of XRD data reveals that the compound Bi6FeNiTi3O18 shows orthorhombic structure with space group P2/m and SEM images confirm the uniform layered morphology. Bi6FeNi Ti3O18 ceramic have shown very high Tc of 450 °C and typical relaxor behaviour. Impedance analysis reveals the effect of grains, grain boundaries and electrode on conductivity. Ferroelectric nature is confirmed by obtained P-E loop at room temperature. We also report much lower band gap (Eg = 1.87 eV) as compared to Bi6Fe2Ti3O18 (Eg = 3.2 eV) ceramics which is due to Ni 3d state formation below Fe 3d state. The present work provide new path to engineer the functional properties of perovskite oxides for memory and energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

5. References

  1. J.A. Turner, Science. 285, 687–689 (1999)

    CAS  PubMed  Google Scholar 

  2. M. Shao, X. Tang, Y.H. Zhang, W.J. Li, Front. Ecol. Environ. 4, 353–361 (2006)

    Google Scholar 

  3. J. Li, Y. Yu, L. Zhang, Nanoscale 6, 8473–8488 (2014)

    ADS  CAS  PubMed  Google Scholar 

  4. G. Naresh, T.K. Mandal, ACS Appl. Mater. Interfaces. 6, 23, 21000–21010 (2014)

    CAS  PubMed  Google Scholar 

  5. X. Xie, H. Sun, Z. Xu, M. Wang, X. Chen, J. Han, New. J. Chem. 43, 14714–14719 (2019)

    CAS  Google Scholar 

  6. Y. Cheng, B. Peng, Z.-. Hu, Z. Zhou, M. Liu, Phys. Lett. A 382, 3018 (2018)

    ADS  CAS  Google Scholar 

  7. W. Eerenstein, N. Mathur, J. Scott, Nature. 442, 759 (2006)

    ADS  CAS  PubMed  Google Scholar 

  8. N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, J. Phys. : Condens. Matter. 27, 504002 (2015)

    CAS  PubMed  Google Scholar 

  9. J. Shen, J. Cong, D. Shang, Y. Chai, S. Shen, K. Zhai, Y Sun Sci. Rep. 6, 34473 (2016)

    ADS  CAS  Google Scholar 

  10. J.F. Scott, C Paz de Araujo Sci. 246, 1400 (1989)

    CAS  Google Scholar 

  11. K. Poonam, A. Sharma, S.K. Arora, Tripathi, J. Ener Sto. 21, 801 (2019)

    Google Scholar 

  12. J. Richter, P. Holtappels, T. Graule, T. Nakamura, L.J. Gauckler, Monatsh Chem. 140(9), 985 (2009)

    CAS  Google Scholar 

  13. L. Mühlenbein, C.B. Singh, A. Lotnyk, C. Himcinschi, Y. Yun, N. Ramakrishnegowda, D.S. Knoche, X. Li, A. Bhatnagar, ACS Nano Lett. 20, 8789 (2020)

    ADS  Google Scholar 

  14. P. Tan, M. Liu, Z. Shao, M. Ni, Adv. Energy Mater. 7(13), 1602674 (2017)

    Google Scholar 

  15. P. Goel, S. Sundriyal, V. Shrivastav, S. Mishra, D.P. Dubal, K. -H, A. Kim, Deep, Nano Energy. 80, 105552 (2021)

    CAS  Google Scholar 

  16. T. Pikula, J. Dzik, P. Guzdek, V.I. Mitsiuk, Z. Surowiec, R. Panek, E. Jartych, Ceram. Int. 43, 11442 (2017)

    CAS  Google Scholar 

  17. K. Srinivas, P. Sarah, S.V. Suryanarayana, Bull. Mater. Sci. 26, 247 (2003)

    CAS  Google Scholar 

  18. A. Srinivas, M. Mahesh Kumar, S.V. Suryanarayana, T. Bhimasankaram, Mater. Res. Bull. 34, 989 (1999)

    CAS  Google Scholar 

  19. S. Supriya, Coord. Chem. Rev. 479, 215010 (2023)

    CAS  Google Scholar 

  20. Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, Jpn J. Appl. Phys. 39, L1259 (2000)

    ADS  CAS  Google Scholar 

  21. C.B. Singh, N.K. Verma, A.K. Singh, Integr. Ferroelectr. 194, 145 (2018)

    ADS  Google Scholar 

  22. H.J. Kim, J.W. Kim, E.J. Kim, J.Y. Choi, C.M. Raghavan, W.-J. Kim, M.H. Kim, K. Song, J.-W. Kim, S.S. Kim, Ferroelectr. 465, 68 (2014)

    ADS  CAS  Google Scholar 

  23. X.Y. Mao, W. Wang, X.B. Chen, Y.L. Lu, Appl. Phys. Lett. 95(8), 082901 (2009)

    ADS  Google Scholar 

  24. Z. Liu, J. Yang, X.W. Tang, L.H. Yin, X.B. Zhu, J.M. Dai, Y.P. Sun, Appl. Phys. Lett. 101(12), 122402 (2012)

    ADS  Google Scholar 

  25. H. Wang, Z.F. Liu, L. Yu, Z.M. Tian, S.L. Yuan, Mater. Sci. Eng. B 176(15), 1243 (2011)

    CAS  Google Scholar 

  26. J.F. Scott, C.A. Araujo, Science. 246, 1400–1405 (1989)

    ADS  CAS  PubMed  Google Scholar 

  27. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today. 51, 22–27 (1998)

    CAS  Google Scholar 

  28. C.P. De Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature. 374(6523), 627–629 (1995)

    ADS  Google Scholar 

  29. P.C. Joshi, S.B. Krupanidhi, Appl. Phys. Lett. 62, 1928–1930 (1993)

    ADS  CAS  Google Scholar 

  30. B. Park, B. Kang, S. Bu et al., Nature. 401, 682–684 (1999)

    ADS  CAS  Google Scholar 

  31. P. Tan, M.L. Liu, Z.P. Shao et al., Adv. Energy Mater. 7, 1602674 (2017)

    Google Scholar 

  32. G.S. Hegde, A. Ghosh, R. Badam, N. Matsumi, R Sundara ACS Appl. Energy Mater. 3, 1338 (2020)

    CAS  Google Scholar 

  33. F. Zhang, C. Yang, X. Gao, S. Chen, Y. Hu, H. Guan, Y. Ma, J. Zhang, H. Zhou, L. Qi, ACS Appl. Mater. Interfaces. 11, 9620–9629 (2017)

    Google Scholar 

  34. Y.G. Wu, X.B. Zhu, W.H. Wan, Z.N. Man, Y. Wang, Z. Lü Adv. Funct. Mater. 31, 49 (2021)

    Google Scholar 

  35. A.R. Dehghani-Sanij, E. Tharumalingam, M.B. Dusseault, R. Fraser, Renew. Sustain. Energy Reviews. 104, 192 (2019)

    Google Scholar 

  36. G.R. Monama, K.E. Ramohlola, E.I. Iwuoha, K.D. Modibane, Results Chem. 4, 100321 (2022)

    CAS  Google Scholar 

  37. X. Li, T. Zhu, C. Wen, Y. Yang, S. Ma, X. Huang, H. Li, Sun Electro Acta 317, 367 (2019)

    CAS  Google Scholar 

  38. Z. Wang, L. Zou, S. Guo, M. Sun, Y. Chen, B. Chi, J. Pu, J. Li, J. P Sour. 468, 228362 (2020)

    CAS  Google Scholar 

  39. X. Chen, J. Xiao, Y. Xue, X. Zeng, F. Yang, P. Su, Ceram. Int. 40, 2635–2639 (2014)

    CAS  Google Scholar 

  40. W. Wang, J. Lu, Y. Yin, J. Wang, X. Chen, X. Mao, Y. Lu, Jpn J. Appl. Phys. 58, 075510 (2019)

    ADS  CAS  Google Scholar 

  41. N.K. Verma, S.K.S. Patel, D. Kumar, C.B. Singh, A.K. Singh, AIP Conf. Proc. 1953, 050075 (1953)

    Google Scholar 

  42. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)

    Google Scholar 

  43. J. Yang, L.H. Yin, Z. Liu, X.B. Zhu, W.H. Song, J.M. Dai, Z.R. Yang, Y.P. Sun, Appl. Phys. Lett. 101, 012402 (2012)

    ADS  Google Scholar 

  44. J. Yang, W. Tong, Z. Liu, X.B. Zhu, J.M. Dai, W.H. Song, Z.R. Yang, Y.P. Sun, Phys. Rev. B 86, 104410 (2012)

    ADS  Google Scholar 

  45. B. Yuan, J. Yang, J. Chen, X.Z. Zuo, L.H. Yin, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, Appl. Phys. Lett. 104, 062413 (2014)

    ADS  Google Scholar 

  46. Z.Z. Cui, X.F. Zhai, Y.D. Chuang, H. Xu, H.L. Huang, J.L. Wang, Z.P. Fu, R.R. Peng, J.H. Guo, Y.L. Lu, Phys. Rev. B 95, 205102 (2017)

    ADS  Google Scholar 

  47. W. Bai, G. Chen, J.Y. Zhu, J. Yang, T. Lin, X.J. Meng, X.D. Tang, C.G. Duan, J.H. Chu, Appl. Phys. Lett. 100, 082902 (2012)

    ADS  Google Scholar 

  48. Z. Liu, J. Yang, X.W. Tang, L.H. Yin, X.B. Zhu, J.M. Dai, Y.P. Sun, Appl. Phys. Lett. 101, 122402 (2012)

    ADS  Google Scholar 

  49. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci: Mater. Electron. 27, 425–435 (2016)

    CAS  Google Scholar 

  50. R.L. Snyder, Jenkins, Chemical analysis: Introduction to X-ray powder diffractometry (Wiley, New York, 1996)

    Google Scholar 

  51. L.B. Kong, J. Ma, W. Zhu, O.K. Tan, Mater. Lett. 51, 108 (2001)

    CAS  Google Scholar 

  52. A. Simon, J. Ravez, M. Maglione, J. Phys. : Condens. Mater. 16, 963 (2004)

    ADS  CAS  Google Scholar 

  53. O. Subohi, L. Shastri, G.S. Kumar, M.M. Malik, R. Kurchania, Mater. Res. Bull. 49, 651 (2014)

    CAS  Google Scholar 

  54. V. Pal, C.B. Singh, D. Kumar, A.K. Singh, Mater. Today: Pro. 68, 2741 (2022)

    CAS  Google Scholar 

  55. C.B. Singh, D. Kumar, N.K. Verma, A.K. Singh, AIP Conf. Pro. 2115, 030619 (2019)

    CAS  Google Scholar 

  56. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S E Park Jpn J. Appl. Phys. 40, 5999 (2001)

    ADS  CAS  Google Scholar 

  57. X. Qi, K. Li, E. Sun, B. Song, D. Huo, J. Li, X. Wang, R. Zhang, B. Yang, W. Cao, J. Mater. Sci. Tech. 104, 119 (2022)

    CAS  Google Scholar 

  58. Z. Zhu, N. Zheng, G. Li, Q. Yin, J. Am. Ceram. Soc. 89, 717 (2006)

    CAS  Google Scholar 

  59. N.K. Verma, C.B. Singh, D. Kumar, A.K. Singh, Ferroelectrics 617, 93–100 (2023)

    ADS  CAS  Google Scholar 

  60. A. Lisińska–Czekaj, D. Czekaj, Mater. Sci. Forum. 730–732, 76 (2013)

    Google Scholar 

  61. E. Barsoukov, J.R. Macdonald (eds.), Impedance spectroscopy, theory, experiment, and applications, 2nd edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  62. T. Shet, K.B.R. Varma, Ferroelectr. 502(1), 87 (2016)

    ADS  CAS  Google Scholar 

  63. C.M. Raghavan, J.W. Kim, S.S. Kim, J.-W. Kim, T.K. Song, J. Electroceram. 36, 76 (2016)

    CAS  Google Scholar 

  64. Y. Noguchi1, I. Miwa, Y. Goshima, M. Miyayama, Jpn J. Appl. Phys. 39, L1259 (2000)

    ADS  CAS  Google Scholar 

  65. L. Mühlenbein, C.B. Singh, A.K. Singh, I. Fina, C. Himcinschi, A. Lotnyk, A. Bhatnagar, ACS Appl. Electron. Mater. 4, 1997 (2022)

    Google Scholar 

  66. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidil. 5, 627 (1966)

    ADS  Google Scholar 

  67. C.B. Singh, D. Kumar, N.K. Prashant, A.K. Verma, Singh, AIP Conf. Proc. 1953, 050041 (1953)

    Google Scholar 

  68. X.Z. Zuo, E.J. He, J. Bai, S.J. Zhu, X.C. Kan, Z.Z. Hui, J. Yang, X.B. Zhu, J.M. Dai, Curr. Appl. Phys. 19, 1391 (2019)

    ADS  Google Scholar 

  69. W.S. Choi, H.N. Lee, Appl. Phys. Lett. 100, 132903 (2012)

    ADS  Google Scholar 

  70. G. Chen, W. Bai, L. Sun, J. Wu, Q. Ren, W.F. Xu, J. Yang, X.J. Meng, X.D. Tang, C.G. Duan, J.H. Chu, J. Appl. Phys. 113, 034901 (2013)

    ADS  Google Scholar 

  71. D. Mala, C.B. Singh, A.K. Singh, 2023 IEEE International Symposium on Applications of Ferroelectrics (ISAF), Cleveland, OH, USA, 2023, pp. 1–4, https://doi.org/10.1109/ISAF53668.2023.10265387

  72. T.T. Wang, H.M. Deng, X.K. Meng, H.Y. Cao, W.L. Zhou, P. Shen, Y.Y. Zhang, P.X. Yang, J.H. Chu, Ceram. Int. 43, 8792 (2017)

    CAS  Google Scholar 

  73. X. Mao, H. Sun, W. Wang, Y. Lu, X. Chen, Solid State Commun. 152, 483–487 (2012)

    ADS  CAS  Google Scholar 

  74. K. Qian, Z. Jiang, H. Shi, W. Wei, C. Zhu, J. Xie, Mater. Lett. 183, 303–306 (2016)

    CAS  Google Scholar 

  75. G. Chen, W. Bai, L. Sun, J. Wu, Q. Ren, W.F. Xu, J. Yang, X.J. Meng, X.D. Tang, C.G. Duan, J.H. Chu, J. Appl. Phys. 113034901 (2013)

  76. S.M. Sun, W.Z. Wang, H.L. Xu, L. Zhou, M. Shang, L. Zhang, J. Phys. Chem. C 112, 17835–17843 (2008)

    CAS  Google Scholar 

  77. J.-B. Li, Y.P. Huang, G.H. Rao, G.Y. Liu, J. Luo, J.R. Chen, J.K. Liang, Appl. Phys. Lett. 96, 222903 (2010)

    ADS  Google Scholar 

  78. H. Sun, Y. Wu, X. Xie, Y. Lu, T. Yao, J. Zhong, X. Chen, J. Materiomics. 4, 353–359 (2018)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Chandra Bhal Singh contributed to conceptualization, methodology, visualization, data curation and analysis, investigation, original draft writing. Akhilesh Kumar Singh contributed to data curation, resources, review & editing. Narendra Kumar Verma contributed to methodology, visualization, data curation and analysis, investigation, writing – review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Narendra Kumar Verma.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and/or animal participants

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C.B., Singh, A.K. & Verma, N.K. Development of low band gap layered Bi6FeNiTi3O18 aurivillius phase ceramics for ferroelectric memory and cathode for lithium-oxygen batteries applications. J Mater Sci: Mater Electron 35, 433 (2024). https://doi.org/10.1007/s10854-024-12215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12215-1

Navigation