Skip to main content
Log in

Enhancing luminescence and dielectric properties in ceramics: rare-earth modification of KMg4(PO4)3-based materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to improve the resource value of phosphates by developing smart or multifunctional materials for a variety of applications, we have successfully synthesized rare-earth element (RE3+)-doped pure polyphosphate materials, designated by the chemical formula KMg4(PO4)3, by the high-temperature solid-solution method. The resulting pure phases are crystallized in the Pnnm orthorhombic system. Analysis by X-ray diffraction (XRD) and infrared spectroscopy (IR) confirmed the high purity of the phases and the incorporation of lanthanide elements into the crystal structure, demonstrating both structural completeness and high thermal stability. Optical properties analysis reveals that they are promising materials for light-emitting diode (LEDs) applications because of their broad absorption bands ranging from UV to near-IR. Their emission covers the visible spectrum as well as exhibiting short luminescence decay times. (τ = 1.31 ms for Dy3+ ions and τ = 0.41 ms for Nd3+ ions). In parallel, the electrical properties demonstrated ionic conductivity at intermediate temperatures. Ionic conduction is enhanced by trivalent doping, as the material doped with Nd3+ presents the highest conductivity value at room temperature (σ = 2.85*10–11 S.cm−1). The dielectric properties confirm their potential use as positive electrode materials for battery technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data of this study are not openly available and are available from the corresponding author upon reasonable request.

References

  1. R. Chen, D.S. Butenko, S. Li, X. Zhang, G. Li, I.V. Zatovsky, W. Han, Chin. Chem. Lett. 35, 108358 (2023). https://doi.org/10.1016/j.cclet.2023.108358

    Article  CAS  Google Scholar 

  2. A. Mukherjee, M. Akhtar, J.-K. Chang, S. Banerjee, S.B. Majumder, Mater. Chem. Phys. 303, 127733 (2023). https://doi.org/10.1016/j.matchemphys.2023.127733

    Article  CAS  Google Scholar 

  3. Y.-J. Chen, J. Cheng, S. Sun, Y.-Z. Wang, L. Guo, New Carbon Mater. 36, 1118 (2021). https://doi.org/10.1016/S1872-5805(21)60098-7

    Article  CAS  Google Scholar 

  4. Y. Man, J. Sun, X. Zhao, L. Duan, Y. Fei, J. Bao, X.Y. Mo, X. Zhou, J. Colloid Interface Sci. 635, 417 (2023). https://doi.org/10.1016/j.jcis.2022.12.155

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Y. Zou, A. Tang, C. Shang, P.Z. Zhang, Z. Huang, Mater. Lett. 319, 132216 (2022). https://doi.org/10.1016/j.matlet.2022.132216

    Article  CAS  Google Scholar 

  6. D. Harbaoui, M.M.S. Sanad, C. Rossignol, E.-K. Hlil, N. Amdouni, K. Zaidat, S. Obbade, J. Alloys Compd. 901, 163641 (2022). https://doi.org/10.1016/j.jallcom.2022.163641

    Article  CAS  Google Scholar 

  7. R. Essehli, B. Bali, S. Benmokhtar, K. Bouziane, B. Manoun, M.A. Abdslam, H. Ehrenber, J. Alloys Compd. 509, 1163 (2011). https://doi.org/10.1016/j.jallcom.2010.08.159

    Article  CAS  Google Scholar 

  8. H. Li, X. Gong, Y. Chen, J. Huang, Y. Lin, Z. Luo, Y. Huang, J. Rare Earths 36, 456 (2018). https://doi.org/10.1016/j.jre.2017.09.014

    Article  CAS  Google Scholar 

  9. A. Souamti, D.B.H. Chehimi, Mater. Sci. Eng. B 265, 115040 (2021). https://doi.org/10.1016/j.mseb.2020.115040

    Article  CAS  Google Scholar 

  10. X. Ma, K. Zhang, Q. Luo, Y. Chu, K. Chen, X. Wang, Y. Zhou, W. Zhang, W. Fang, X. Chen, S. Huang, M. Liao, W. Gao, Results Opt. 9, 100327 (2022). https://doi.org/10.1016/j.rio.2022.100327

    Article  Google Scholar 

  11. B. Sardi, A. Altway, M. Mahfud, Fuel 324, 124509 (2022). https://doi.org/10.1016/j.fuel.2022.124509

    Article  CAS  Google Scholar 

  12. D. Marinova, K. Vaselinov, M. Kalapsazova, E. Zhecheva, R. Stoyanova, Mater. Today: Proc. 61, 1260 (2022). https://doi.org/10.1016/j.matpr.2022.02.559

    Article  CAS  Google Scholar 

  13. T. Jin, J. Yao, X. Jin, J. Jiang, Y. Li, Mater. Lett. 307, 131101 (2022). https://doi.org/10.1016/j.matlet.2021.131101

    Article  CAS  Google Scholar 

  14. C.M. Mehare, G. Mishra, N.S. Dhole, S.J. Dhole, J. Mol. Struct. 1264, 133250 (2022). https://doi.org/10.1016/j.molstruc.2022.133250

    Article  CAS  Google Scholar 

  15. Y. Tong, Y. Chen, S.Y. Chen, R.F. Wei, L.P. Chen, H. Guo, Ceram. Int. 47, 12320 (2021). https://doi.org/10.1016/j.ceramint.2021.01.083

    Article  CAS  Google Scholar 

  16. Y. Li, X. Wei, H. Chen, Y. Pan, Y. Ji, Physica B 478, 95 (2015). https://doi.org/10.1016/j.physb.2015.09.011

    Article  ADS  CAS  Google Scholar 

  17. Y. Tong, W.N. Zhang, R.F. Wei, L.P. Chen, H. Guo, Ceram. Int. 47, 2600 (2021). https://doi.org/10.1016/j.ceramint.2020.09.106

    Article  CAS  Google Scholar 

  18. S.P. Tatte, Y. Parauha, N.S. Dhoble, G.C. Mishra, S.J. Dhoble, Optik 270, 169976 (2022). https://doi.org/10.1016/j.ijleo.2022.169976

    Article  ADS  CAS  Google Scholar 

  19. Q. Ma, Q. Liu, M. Wu, Y. Liu, R. Wang, R. Zhou, Y. Xu, H. Wei, R. Min, L. Mei, Z. Huang, B. Ma, Ceram. Int. 49, 8204 (2023). https://doi.org/10.1016/j.ceramint.2022.10.345

    Article  CAS  Google Scholar 

  20. A. Wei, J. Deng, C. Lu, H. Wang, B. Yang, J. Zhong, Chem. Eng. J. 395, 125127 (2020). https://doi.org/10.1016/j.cej.2020.125127

    Article  CAS  Google Scholar 

  21. M. He, Q.F. Bian, Z. Zhang, B. Dong, G. Zhu, R. Xue, Y. Cong, K. Liu, Mater. Today Commun. 33, 104538 (2022). https://doi.org/10.1016/j.mtcomm.2022.104538

    Article  CAS  Google Scholar 

  22. X. Lu, H. Liu, X. Shi, J. Zhang, J. Electroanal. Chem. 927, 116998 (2022). https://doi.org/10.1016/j.jelechem.2022.116998

    Article  CAS  Google Scholar 

  23. M.V.V.T. Poiyamozhi, J. Thivya, Diam. Relat. Mater. 132, 109679 (2023). https://doi.org/10.1016/j.diamond.2023.109679

    Article  ADS  CAS  Google Scholar 

  24. F. Khodabandeloo, M. Sheydae, P. Moharramkhani, M.M. Farahani, A. Khataee, Chemosphere 330, 138766 (2023). https://doi.org/10.1016/j.chemosphere.2023.138766

    Article  CAS  PubMed  Google Scholar 

  25. G. Singh, A. Kushwaha, M. Sharma, Mater. Today Commun. 31, 103390 (2022). https://doi.org/10.1016/j.mtcomm.2022.103390

    Article  CAS  Google Scholar 

  26. P.E. Tomaszewski, M. Maczka, A. Majchrowski, A. Waskowska, J. Hanuza, Solid State Sci. 7, 1201 (2005). https://doi.org/10.1016/j.solidstatesciences.2005.06.002

    Article  ADS  CAS  Google Scholar 

  27. J. Chen, C. Li, Z. Hui, Y. Liu, Inorg. Chem. 56, 1144 (2017). https://doi.org/10.1021/acs.inorgchem.6b02140

    Article  CAS  PubMed  Google Scholar 

  28. L. Lijun, F. Hongmei, T. Yan, T. Wanj, Opt. Mater. 34, 175 (2011). https://doi.org/10.1016/j.optmat.2011.08.008

    Article  ADS  CAS  Google Scholar 

  29. L. Lin, T. Wanjun, J. Lumin. 198, 405 (2018). https://doi.org/10.1016/j.jlumin.2018.03.001

    Article  CAS  Google Scholar 

  30. C.M. Mehare, M. Jog, M.D. Mehare, N.S. Dhoble, S.J. Dhoble, J. Phys. Conf. Ser. 1913, 012032 (2021). https://doi.org/10.1088/1742-6596/1913/1/012032

    Article  CAS  Google Scholar 

  31. J. Chen, Y.-G. Liu, L. Mei, Z. Wang, M. Fang, Z. Huang, J. Mater. Chem. C 3, 5516 (2015). https://doi.org/10.1039/C5TC00636H

    Article  CAS  Google Scholar 

  32. X. Zhang, Z. Shi, H. Li, F. Lv, L. Fu, Mater. Lett. 330, 133316 (2023). https://doi.org/10.1016/j.matlet.2022.133316

    Article  CAS  Google Scholar 

  33. W. Zhu, Q. Mao, Y. Jia, J. Ni, L. Gao, Electron. Mater. 52, 836 (2023). https://doi.org/10.1007/s1166402210128-5

    Article  ADS  CAS  Google Scholar 

  34. Z. Wang, G. Cui, Q. Zheng, X. Ren, Q. Yang, S. Yuan, X. Bao, C. Shu, Y. Zhang, L. Li, Y.-S. He, L. Chen, Z.-F. Ma, X.-Z. Liao, Small 19, 2206987 (2023). https://doi.org/10.1002/smll.202206987

    Article  CAS  Google Scholar 

  35. A.O. Saleck, C. Mercier, C.F. Houttemane, A. Assani, M. Saadi, E. Capoen, L.E. Ammari, J. Solid State Chem. 312, 123139 (2022). https://doi.org/10.1016/j.jssc.2022.123139

    Article  CAS  Google Scholar 

  36. Y.-L. Wei, G.-X. Liu, D.-L. Chen, W.-D. Yao, X. Lian, W. Liu, R.-L. Tang, J. Solid State Chem. 312, 123203 (2022). https://doi.org/10.1016/j.jssc.2022.123203

    Article  CAS  Google Scholar 

  37. J. Gao, F. Chen, W. Su, J. Alloys Compd. 933, 167807 (2023). https://doi.org/10.1016/j.jallcom.2022.167807

    Article  CAS  Google Scholar 

  38. R. Kahlaoui, K. Arbi, R. Jimenez, I. Sobrados, J. Sanz, R. Ternane, J. Mater. Sci. 55, 8464 (2020). https://doi.org/10.1007/s10853-020-04463-3

    Article  ADS  CAS  Google Scholar 

  39. S. Chiang, J.A. Kaduk, L.L. Shaw, Mater. Chem. Phys. 312, 128656 (2024). https://doi.org/10.1016/j.matchemphys.2023.128656

    Article  CAS  Google Scholar 

  40. D. Wang, N. Su, Z. Yu, S. Lu, Y. Lyu, B. Guo, Electrochem. Commun. 159, 107651 (2024). https://doi.org/10.1016/j.elecom.2023.107651

    Article  CAS  Google Scholar 

  41. Q. Zhang, M. Jiang, H. Kungl, R.A. Eichel, Electrochim. Acta 477, 143791 (2024). https://doi.org/10.1016/j.electacta.2024.143791

    Article  CAS  Google Scholar 

  42. B. Fan, W.H. Zhao, Appl. Phys. A 126, 260 (2020). https://doi.org/10.1007/s00339-020-3444-5

    Article  ADS  CAS  Google Scholar 

  43. J. Sun, J. Zeng, Y. Sun, H. Du, J. Lumin. 138, 72 (2013). https://doi.org/10.1016/j.jlumin.2013.01.015

    Article  CAS  Google Scholar 

  44. W. Zhou, M. Gu, Y. Ou, C. Zhang, X. Zhang, L. Zhou, H. Liang, Inorg. Chem. 56, 7433 (2017). https://doi.org/10.1021/acs.inorgchem.7b00737

    Article  CAS  PubMed  Google Scholar 

  45. A. Souemti, M. Ben Mouhammed, A. Diego Lozano-Gorrin, D. Ben Hassen Chehimi, Chem. Afr. 5, 575 (2022). https://doi.org/10.1007/s42250-022-00336-1

    Article  CAS  Google Scholar 

  46. A. Souamti, I.R. Martín, L. Zayani, M.A. Hernández-Rodríguez, K.S. Carracedo, A.D. Lozano-Gorrín, E. Lalla, D.B.H. Chehimi, J. Lumin. 177, 160 (2016). https://doi.org/10.1016/j.jlumin.2016.04.045

    Article  CAS  Google Scholar 

  47. A. Souamti, I.R. Martín, L. Zayani, M.A. Hernández-Rodríguez, K.S. Carracedo, A.D. Lozano-Gorrín, E. Lalla, D.B.H. Chehimi, J. Lumin. 177, 93 (2016). https://doi.org/10.1016/j.jlumin.2016.04.033

    Article  CAS  Google Scholar 

  48. A. Souamti, M. Kahlaoui, R. Fezai, A.D. Lozano-Gorrín, D.B.H. Chehimi, Mater. Sci. Eng. B 244, 56 (2019). https://doi.org/10.1016/j.mseb.2019.04.024

    Article  CAS  Google Scholar 

  49. A. Souamti, M. Kahlaoui, I.R. Martín, A.D. Lozano-Gorrín, E. Lalla, D.B.H. Chehimi, Mater. Sci. Eng. B 247, 114384 (2019). https://doi.org/10.1016/j.mseb.2019.114384

    Article  CAS  Google Scholar 

  50. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, G. AlFalah, L.F. AlOusi, G. Yasin, M. Iqbal, J. Phys. Chem. Solids 156, 110183 (2021). https://doi.org/10.1016/j.jpcs.2021.110183

    Article  CAS  Google Scholar 

  51. L. Gao, K. Tang, J. Xu, Z. Xu, Mater. Des. 116, 109 (2017). https://doi.org/10.1016/j.matdes.2016.12.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education of Tunisia for supporting this work. We are also grateful to Mr. Joumi Fathi professor at physics department at Faculty of Science of Tunis, for accepting the use of impedance spectroscopy.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AS, AS, and IRM. X-ray diffraction and Scanning Electron Microscopy results were collected and analyzed by ADL. The managers of the two research laboratories who supervised and reviewed the results of this paper are AM and IRM. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Ahmed Souemti or Adel Megriche.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souemti, A., Selmi, A., Martín, I.R. et al. Enhancing luminescence and dielectric properties in ceramics: rare-earth modification of KMg4(PO4)3-based materials. J Mater Sci: Mater Electron 35, 421 (2024). https://doi.org/10.1007/s10854-024-12213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12213-3

Navigation