Skip to main content
Log in

The impact of 50% combined Fe and Mn ions at the B-sites on the structural, optical, magnetic and dielectric properties of double perovskite Nd2FeMnO6

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel functional materials with competing degrees of freedom have potential breakthrough in the research and development of memory devices and spintronics. In this perspective, double perovskite provides flexible selection of cations and invoke keen interest for technological applications. In this report rare earth oxide material, Nd2FeMnO6 double perovskite have been investigated. Nd2FeMnO6 double perovskite was conventionally synthesized via solid state reaction method followed by sintering at high temperature of 1200 °C. Rietveld refined X-ray diffractograms establish the crystallization of the Nd2FeMnO6 system to be orthorhombic distorted structure having Pbnm space group and Fe/Mn cations being randomly arranged at B and B’ sites in the oxygen octahedra. The vibrational modes corresponding to the Fe and Mn cations in the Raman study substantiate the blending of NdMnO3 and NdFeO3 sublattices in Nd2FeMnO6 double perovskite. XPS measurement evidence the oxidation state of Fe and Mn ions in the oxygen octahedra to be + 3. Magnetic studies reveal room temperature antiferromagnetic ordering in Nd2FeMnO6 with a Neel transition at 505 K, are attributed to the Fe3+–O–Mn3+ and Mn3+–O–Mn3+ exchange integral chains. Low temperature ZFC/FC curves mark the appearance of thermomagnetic irreversibility at 90 K caused by the magnetic anisotropy of Jahn-Teller Mn3+ cations. Dielectric studies disclose an abrupt change in the dielectric constant at the vicinity of the Neel temperature for all measured frequencies, evidencing the existence of magnetodielectricity in Nd2FeMnO6 double perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper in graphical form and some are tabulated. if needed, data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, Prog. Solid State Chem. 22(3), 197–233 (1993)

    CAS  Google Scholar 

  2. K.L. Holman, Q. Huang, T. Klimczuk, K. Trzebiatowski, J. Bos, E. Morosan, J. Lynn, R.J. Cava, J. Solid State Chem. 180(1), 75–83 (2007)

    ADS  CAS  Google Scholar 

  3. G. King, P. Woodward, J. Mater. Chem. 20(28), 5785–5786 (2010)

    CAS  Google Scholar 

  4. S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, M. Samant, Proc. IEEE 91(5), 661–680 (2003)

    CAS  Google Scholar 

  5. T. Saha-Dasgupta, J. Supercond. Novel Magn. 26(5), 1991–1995 (2013)

    CAS  Google Scholar 

  6. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature. 395 6703, 677–680 (1998)

    Google Scholar 

  7. J.H. Park, S.K. Kwon, B.I. Min, Phys. Rev. B 65 17, 174401 (2002)

    Google Scholar 

  8. D.D. Sarma, Curr. Opin. Solid State Mater. Sci. 5 4, 261–268 (2001)

    ADS  Google Scholar 

  9. Y. Moritomo, S. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, M. Sakata, Phys. Rev. B 61(12), R7827–R7830 (2000)

    ADS  CAS  Google Scholar 

  10. S.-D. Guo, B.-G. Liu, Phys. B: Condens. Matter. 408, 110–114 (2013)

    ADS  CAS  Google Scholar 

  11. E. Burzo, I. Balasz, M. Valeanu, I.G. Pop, J. Alloys Compd. 509(1), 105–113 (2011)

    CAS  Google Scholar 

  12. N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Adv. Mater. 17 18, 2225–2227 (2005)

    Google Scholar 

  13. T. Nakamura, J.-H. Choy, J. Solid State Chem. 20 3, 233–244 (1977)

    ADS  Google Scholar 

  14. R. Beltrán Rodríguez, D. Landínez Téllez, J. Roa-Rojas, Mater. Res. 19, 877–881 (2016)

    Google Scholar 

  15. P.M. Woodward, Acta Crystallogr., Sect. B: Struct. Sci. 53 1, 32–43 (1997)

    ADS  Google Scholar 

  16. P.M. Woodward, Acta Crystallogr., Sect. B: Struct. Sci. 53 1, 44–66 (1997)

    ADS  Google Scholar 

  17. Y. Qian, H. Wu, E. Kan, J. Lu, R. Lu, Y. Liu, W. Tan, C. Xiao, K. Deng, J. Appl. Phys. 114 6, 063713 (2013)

    Google Scholar 

  18. M. Iranmanesh, M. Lingg, M. Stir, J. Hulliger, RSC Adv. 6 48, 42069–42075 (2016)

    Google Scholar 

  19. W. Wang, W. Feng, J. Yuan, N. Pang, X. Zhao, M. Li, Z. Bao, K. Zhu, D. Odkhuu, Phys. B: Condens. Matter. 540, 33–37 (2018)

    ADS  CAS  Google Scholar 

  20. K.A. Parrey, S.A. Khandy, I. Islam, A. Laref, D.C. Gupta, A. Niazi, A. Aziz, S.G. Ansari, R. Khenata, S. Rubab, J. Electron. Mater. 47 7, 4209–4209 (2018)

    ADS  Google Scholar 

  21. I. Abdel-Latif, J. Phys. 1 3, 15–31 (2012)

    Google Scholar 

  22. T. Goto, T. Kimura, G. Lawes, A. Ramirez, Y. Tokura, Phys. Rev. Lett. 92 25, 257201 (2004)

    Google Scholar 

  23. C.N.R. Rao, A. Arulraj, P.N. Santosh, A.K. Cheetham, Chem. Mater. 10 10, 2714–2722 (1998)

    Google Scholar 

  24. B. Lorenz, Y. Wang, Y. Sun, C. Chu, Phys. Rev. B 70 21, 212412 (2004)

    Google Scholar 

  25. M.-H. Phan, S.-C. Yu, J. Magn. Magn. Mater. 308 2, 325–340 (2007)

    ADS  Google Scholar 

  26. M. Fiebig, T. Lottermoser, T. Lonkai, A.V. Goltsev, R.V. Pisarev, J. Magn. Magn. Mater. 290, 883–890 (2005)

    ADS  Google Scholar 

  27. X. Liu, Z. Li, A. Yu, M. Liu, W. Li, B. Li, P. Wu, H. Bai, E. Jiang, J. Magn. Magn. Mater. 313 2, 354–360 (2007)

    ADS  Google Scholar 

  28. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71 14, 2331 (1993)

    Google Scholar 

  29. P. Vanitha, R. Singh, S. Natarajan, C. Rao, Solid State Commun. 109(3), 135–140 (1998)

    ADS  Google Scholar 

  30. A. Maignan, C. Martin, F. Damay, M. Hervieu, B. Raveau, J. Magn. Magn. Mater. 188(1–2), 185–194 (1998)

    ADS  CAS  Google Scholar 

  31. L. Pi, L. Zheng, Y. Zhang, Phys. Rev. B 61 13, 8917 (2000)

    Google Scholar 

  32. A. Banerjee, S. Pal, B. Chaudhuri, J. Chem. Phys. 115 3, 1550–1558 (2001)

    ADS  Google Scholar 

  33. S. Yuan, Y. Yang, Z. Xia, L. Liu, G. Zhang, W. Feng, J. Tang, L. Zhang, S. Liu, Phys. Rev. B 66 17, 172402 (2002)

    Google Scholar 

  34. J.F. Scott, J. Mater. Chem. 22 11, 4567–4574 (2012)

    Google Scholar 

  35. I.A. Sergienko, C. Şen, E. Dagotto, Phys. Rev. Lett. 97 22, 227204 (2006)

    Google Scholar 

  36. V. Cuartero, J. Blasco, J. García, G. Subías, C. Ritter, Rodríguez-Velamazán. Phys. Rev. B 81 22, 224117 (2010)

    Google Scholar 

  37. S. Li, T. Wang, H. Han, X. Wang, H. Li, J. Liu, J. Liu, J. Phys. D 45(5), 055003 (2012)

    ADS  Google Scholar 

  38. T. Chatterji, B. Ouladdiaf, D. Bhattacharya, J. Phys.: Condens. Matter. 21 30, 306001 (2009)

    Google Scholar 

  39. J. Blasco, C. Ritter, J. Garcia, J. De Teresa, J. Pérez-Cacho, M. Ibarra, Phys. Rev. B 62 9, 5609 (2000)

    Google Scholar 

  40. M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S. Kim, C. Zhang, S.-W. Cheong, O.P. Vajk, J.W. Lynn, Phys. Rev. Lett. 95 8, 087206 (2005)

    Google Scholar 

  41. G. Lawes, A.B. Harris, T. Kimura, N. Rogado, R.J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, Phys. Rev. Lett. 95 8, 087205 (2005)

    Google Scholar 

  42. T. Kimura, G. Lawes, T. Goto, Y. Tokura, A. Ramirez, Phys. Rev. B 71 22, 224425 (2005)

    Google Scholar 

  43. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, Tokura, Nature. 426 6962, 55–58 (2003)

    Google Scholar 

  44. V. Caignaert, F. Millange, M. Hervieu, E. Suard, B. Raveau, Solid State Commun. 99 3, 173–177 (1996)

    ADS  Google Scholar 

  45. S. Wu, C. Kuo, H. Wang, W.-H. Li, K. Lee, J. Lynn, R. Liu, J. Appl. Phys. 87 9, 5822–5824 (2000)

    ADS  Google Scholar 

  46. A. Munoz, J. Alonso, M. Martinez-Lope, J. García-Muñoz, M. Fernandez-Diaz, J. Phys.: Condens. Matter. 12 7, 1361 (2000)

    ADS  Google Scholar 

  47. J. Stella Punitha, M. Dhilip, V. Anbarasu, K. Saravana, Kumar, AIP Conf. Proc. 2115(1), 030468 (2019)

    Google Scholar 

  48. J.P. Palakkal, P.N. Lekshmi, S. Thomas, K.G. Suresh, M.R. Varma, RSC Adv. 5, 105531–105536 (2015)

    ADS  Google Scholar 

  49. M. Dhilip, N. Aparna Devi, J. Stella Punitha, V. Anbarasu, Vacuum 167, 16–20 (2019)

    ADS  CAS  Google Scholar 

  50. P. Barrozo, N.O. Moreno, J.A. Aguiar, AMR. 975, 122–127 (2014)

    CAS  Google Scholar 

  51. R. Das, P. Alagarsamy, R.N.P. Choudhary, Phys. Status Solidi B 258, 2100299 (2021)

    ADS  CAS  Google Scholar 

  52. M. Nasir, M. Khan, S.A. Agbo, S. Bhatt, S. Kumar, S. Sen, J. Phys. D 53, 1361–6463 (2020)

    Google Scholar 

  53. S. Lin, Y.-W. Fang, J. He, Y. Zhang, R. Qi, Q. He, R. Huang, P. Xiang, X.-D. Tang, P. Yang, J. Chu, J. Mater. Chem. C 5, 5494–5500 (2017)

    Google Scholar 

  54. K. Aswathi, J.P. Palakkal, M. RaamaVarma, J. Magn. Magn. Mater. 476, 45–53 (2019)

    ADS  CAS  Google Scholar 

  55. S. Rana et al., Available at SSRN 4054613

  56. S. Abhirami, S S Basha Solid State Technol. 64, 4125–4141 (2021)

    Google Scholar 

  57. N. Aparnadevi, C. Venkateswaran, J. Magn. Magn. Mater. 588, 171213 (2023)

    CAS  Google Scholar 

  58. N. Aparnadevi, C. Venkateswaran, Trans. Indian Inst. Met. 77, 1–8 (2023)

    Google Scholar 

  59. D.L. Rousseau, R.P. Bauman, S. Porto, J. Raman Spectrosc. 10 1, 253–290 (1981)

    ADS  Google Scholar 

  60. M.N. Iliev, M.V. Abrashev, H.G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57(5), 2872–2877 (1998)

    ADS  CAS  Google Scholar 

  61. J. Lazurova, M. Mihalik, M. Mihalik Jr, M. Vavra, M. Zentkova, J. Briancin, M. Perovic, V. Kusigerski, O. Schneeweiss, and P. Roupcova, presented at the Journal of Physics: Conference Series, 2015 (unpublished)

  62. S. Chanda, S. Saha, A. Dutta, T.P. Sinha, Mater. Res. Bull. 48(4), 1688–1693 (2013)

    CAS  Google Scholar 

  63. S. Jandl, S. Barilo, S. Shiryaev, A. Mukhin, V.Y. Ivanov, A. Balbashov, J. Magn. Magn. Mater. 264 1, 36–43 (2003)

    ADS  Google Scholar 

  64. S. Mansouri, S. Jandl, A. Mukhin, V.Y. Ivanov, A. Balbashov, Sci. Rep. 7(1), 1 (2017)

    Google Scholar 

  65. D. Mota, A. Almeida, V. Rodrigues, M. Costa, P. Tavares, P. Bouvier, M. Guennou, J. Kreisel, J.A. Moreira, Phys. Rev. B 90(5), 054104 (2014)

    ADS  CAS  Google Scholar 

  66. A. Somvanshi, S. Husain, S. Manzoor, N. Zarrin, W. Khan, J. Alloys Compd. 806, 1250–1259 (2019)

    CAS  Google Scholar 

  67. A. Somvanshi, A. Ahmad, S. Husain, S. Manzoor, A.A.A. Qahtan, N. Zarrin, M. Fatema, W. Khan, Appl. Phys. A 127(6), 424 (2021)

    ADS  CAS  Google Scholar 

  68. O.A. Shahid Husain, Ali, W. Keelani, Khan, Nano-Struct. Nano-Obj. 15, 17–27 (2018)

    Google Scholar 

  69. D. Briggs, Surf. Interface Anal. 3 4, v-v (1981)

  70. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254 8, 2441–2449 (2008)

    ADS  Google Scholar 

  71. R.V. Pisarev, A.S. Moskvin, A.M. Kalashnikova, T. Rasing, Phys. Rev. B 79 23, 235128 (2009)

    Google Scholar 

  72. J.A. de Jong, A.V. Kimel, R.V. Pisarev, A. Kirilyuk, T. Rasing, Phys. Rev. B 84(10), 104421 (2011)

    ADS  Google Scholar 

  73. B. Gilbert, C. Frandsen, E.R. Maxey, D.M. Sherman, Phys. Rev. B 79(3), 035108 (2009)

    ADS  Google Scholar 

  74. J.Y. Law, V. Franco, L.M. Moreno-Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, O. Gutfleisch, Nat. Commun. 9 1, 2680–2680 (2018)

    ADS  Google Scholar 

  75. N. Aparnadevi, K. Saravana Kumar, M. Manikandan, D. Paul Joseph, C. Venkateswaran, J. Appl. Phys. 120, 034101 (2016)

    ADS  Google Scholar 

  76. T.A. Nguyen, T.L. Pham, I.Y. Mittova et al., Nanomaterials (Basel). 11(4), 937 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. L.A. Burrola-Gándara, C.R. Santillan-Rodriguez, F.J. Rivera-Gomez, R.J. Saenz-Hernandez, M.E. Botello-Zubiate, J.A. Matutes-Aquino, J. Appl. Phys. 117 17, 17D144 (2015)

    Google Scholar 

  78. B.K. Banerjee, Phys. Lett. 12, 16 (1964)

    ADS  Google Scholar 

  79. D. Guo, J. Zhu, Y. Yang, X. Fan, G. Chai, W. Sui, Z. Zhang, D. Xue, J. Appl. Phys. 107 4, 043903 (2010)

    Google Scholar 

  80. S. Nakashima, K. Fujita, K. Tanaka, K. Hirao, J. Phys.: Condens. Matter. 17 1, 137–149 (2004)

    ADS  Google Scholar 

  81. C.G. Koops, Phys. Rev. 83 1, 121–124 (1951)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of chemistry IIT Madras, SAIF IIT Madras for XRD &VSM measurements, Department of Medical Physics, Anna University for Raman Studies, SRM University for XPS measurements.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors should have made substantial contributions to the conception and design of the study, or acquisition of data, or analysis and interpretation of data, drafting the article or revising it critically for important intellectual content and final approval of the version to be submitted.

Corresponding author

Correspondence to C. Venkateswaran.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aparnadevi, N., Kumar, Y.N. & Venkateswaran, C. The impact of 50% combined Fe and Mn ions at the B-sites on the structural, optical, magnetic and dielectric properties of double perovskite Nd2FeMnO6. J Mater Sci: Mater Electron 35, 452 (2024). https://doi.org/10.1007/s10854-024-12208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12208-0

Navigation