Skip to main content
Log in

Hydrothermally synthesized CuNiS@CNTs composite electrode material for hybrid supercapacitors and non-enzymatic electrochemical glucose sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Advanced energy storage has driven significant research in the field of energy storage, which bridges the gap between traditional capacitors and batteries in terms of energy and power density. This study investigates the electrochemical performance of copper–nickel sulfide (CuNiS) for supercapacitor applications. Carbon nanotubes (CNTs) are doped into CuNiS mixture to improve the electrical conductivity and capacitive characteristics. The study aimed to determine whether CuNiS/CNTs nanocomposite material was suitable for supercapacitor devices through synthesis, characterization, and electrochemical analysis studies. The hydrothermal method was used to create the composite material, which then went through several characterization processes, such as scanning electron microscopy (SEM) and x-ray diffraction (XRD), to study its morphology and structural properties. The specific capacity of binary composite CuNiS shows 638 C/g; when CuNiS material is doped with 20% CNTs, the specific capacity increases to 1173.69 C/g at the same current density of 1.8 A/g. Additionally, we created a supercapattery device (CuNiS@CNTs//AC) and examined its electrochemical properties. The supercapattery device displays a high coulombic efficiency of 82.69%, an exceptional energy density of 23.51 Wh/kg and a strong power density of 1289.58 W/kg after 7000 GCD cycles. Besides, the composite electrode is used as a non-enzymatic electrochemical glucose sensor. The electrode showed high sensitivity and performance against glucose detection. The nanocomposite electrode materials provide an opportunity to design highly efficient and multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available on request.

References

  1. K.K. Jaiswal, C.R. Chowdhury, D. Yadav, R. Verma, S. Dutta, K.S. Jaiswal, K.S.K. SangmeshB, Karuppasamy, Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus. 7, 100118 (2022)

    CAS  Google Scholar 

  2. J.S. Riti, Y. Shu, Energy Sustain. Soc. 6(1), 1–16 (2016)

    Google Scholar 

  3. Y. Gogotsi, P. Simon, Science 334, 917–918 (2011)

    ADS  CAS  PubMed  Google Scholar 

  4. D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    CAS  PubMed  Google Scholar 

  5. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science. 343, 1210–1211 (2014)

    ADS  CAS  PubMed  Google Scholar 

  6. Q. Lu, Supercapacitor Electrodes with High-energy and power densities prepared from monolithic NiO/Ni Nanocomposite, APS March Meeting Abstracts, 2012, pp. B26. 009

  7. L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    CAS  PubMed  Google Scholar 

  8. Y. Liu, Y. Shi, X. Xu, Evolution and application of all-in-one electrochemical energy storage system. Energy Storage Mater. 41, 677–696 (2021)

    Google Scholar 

  9. V. Molahalli, C. K, M.K. Singh, M. Agrawal, S.G. Krishnan, G. Hegde, Past decade of supercapacitor research – lessons learned for future innovations. J. Energy Storage. 70, 108062 (2023)

    Google Scholar 

  10. S. Shahabuddin, A. Numan, M.M. Shahid, R. Khanam, R. Saidur, A. Pandey, S. Ramesh, Polyaniline-SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry. Ceram. Int. 45, 11428–11437 (2019)

    CAS  Google Scholar 

  11. M. Imran, M.W. Iqbal, A.M. Afzal, M.M. Faisal, H.A. Alzahrani, Synergetic electrochemical performance of nix–mnx sulfide-based binary electrode material for supercapattery devices. J. Appl. Electrochem. 53, 1125–1136 (2023)

    CAS  Google Scholar 

  12. F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J. Alloys Compd. 716, 96–105 (2017)

    CAS  Google Scholar 

  13. A.M. Afzal, M. Ali, M.W. Iqbal, M. Imran, A. Ur Rehman, S. Mumtaz, J.S. Kim, E.H. Choi, Mohammed Alanazi, enhanced the electrochemical performance and stability of supercapattery device with carbon nanotube/cobalt-manganese sulfide‐based composite electrode material. Int. J. Energy Res. 46, 24355–24367 (2022)

    CAS  Google Scholar 

  14. A.U. Rehman, A.M. Afzal, M.W. Iqbal, M. Ali, S. Mohammad Wabaidur, E.A. Al-Ammar, M. Imran, S. Mumtaz, E. Ha Choi, N. Muzaffar, Synergetic and Anomalous Effect of CNTs in the sulphide-based Binary Composite for an Extraordinary and Asymmetric Supercapacitor Device (The Canadian Journal of Chemical Engineering, n/a, 2023)

    Google Scholar 

  15. R. Khan, A.M. Afzal, Z. Hussain, M.W. Iqbal, M. Imran, M. Hamza Waris, M. Azhar Mumtaz, M. Usman, S.M. Wabaidur, E.A. Al-Ammar, S. Mumtaz, MnNbS/Polyaniline Composite-Based Electrode Material for High-Performance Energy Storage Hybrid Supercapacitor Device. physica Status Solidi (a) 220(15), 2300200 (2023)

    ADS  CAS  Google Scholar 

  16. A.M. Afzal, T. Ejaz, M.W. Iqbal, B.S. Almutairi, M. Imran, A. Manzoor, H.H. Hegazy, A. Yasmeen, A. Zaka, T. Abbas, Enhancing the Performance of Cobalt-based Oxide Electrode Material for Asymmetric Supercapacitor Devices. ChemistrySelect 8, e202300440 (2023)

    CAS  Google Scholar 

  17. F. Aslam, H. Ullah, M. Hassan, First principle study of band gap tuning in Cs2InSbX6 (X = cl, br, I) for optoelectronic and thermoelectric applications. Phys. Scr. 97, 045801 (2022)

    ADS  CAS  Google Scholar 

  18. H. Ullah, M. Noor-A‐Alam, Y.H. Shin, Vacancy‐and doping‐dependent electronic and magnetic properties of monolayer SnS2. J. Am. Ceram. Soc. 103, 391–402 (2020)

    CAS  Google Scholar 

  19. A.G. Olabi, Q. Abbas, A. Al Makky, M.A. Abdelkareem, Supercapacitors as next generation energy storage devices: Properties and applications. Energy. 248, 123617 (2022)

    CAS  Google Scholar 

  20. H.M. Waris, R. Khan, A.M. Afzal, M.W. Iqbal, M. Imran, M. Azhar, M. Usman, A.A. Ghfar, S. Mumtaz, Z. Hussain, Composite electrode materials based on nickel cobalt sulfide/carbon nanotubes to enhance the Redox activity for high performance asymmetric supercapacitor devices. Physica Scripta 98, 105979 (2023)

    ADS  Google Scholar 

  21. S. Subhadarshini, E. Pavitra, G.S. Rama Raju, N.R. Chodankar, A. Mandal, S. Roy, S. Mandal, M.V.B. Rao, D.K. Goswami, Y.S. Huh, N.C. Das, One-pot facile synthesis and electrochemical evaluation of selenium enriched cobalt selenide nanotube for supercapacitor application. Ceram. Int. 47, 15293–15306 (2021)

    CAS  Google Scholar 

  22. K. Kraiwattanawong, A review on the development of a porous carbon-based as modeling materials for electric double layer capacitors. Arab. J. Chem. 15, 103625 (2022)

    CAS  Google Scholar 

  23. M. Sk, P. Pradhan, B. Patra, A. Guria, Green biomass derived porous carbon materials for electrical double-layer capacitors (EDLCs). Mater. Today Chem. 30, 101582 (2023)

    CAS  Google Scholar 

  24. M. Imran, A.M. Afzal, M.W. Iqbal, H.H. Hegazy, M.Z. Iqbal, S. Mumtaz, R. Qureshi, Manganese (Sulfide/Oxide) based electrode materials advancement in supercapattery devices. Mater. Sci. Semiconduct. Process. 158, 107366 (2023)

    CAS  Google Scholar 

  25. A.M. Afzal, M.W. Iqbal, M. Imran, H. Umair, S.M. Wabaidur, E.A. Al-Ammar, S. Mumtaz, E.H. Choi, Synthesis of CoNbS, PANI@CoNbS, and PANI@AC composite and study of the impact of PANI on the Electrochemical Characteristics of Energy Storage Device. ECS J. Solid State Sci. Technol. 12, 051003 (2023)

    ADS  Google Scholar 

  26. Y. Quan, G. Wang, L. Lu, Z. Wang, H. Xu, S. Liu, D. Wang, High-performance pseudo-capacitor energy storage device based on a hollow-structured copper sulfide nanoflower and carbon quantum dot nanocomposite. Electrochim. Acta. 353, 136606 (2020)

    CAS  Google Scholar 

  27. M.Z. Iqbal, M.M. Faisal, S.R. Ali, A.M. Afzal, M.R.A. Karim, M.A. Kamran, T. Alharbi, Strontium phosphide-polyaniline composites for high performance supercapattery devices. Ceram. Int. 46, 10203–10214 (2020)

    CAS  Google Scholar 

  28. R. Kihal, H. Fisli, M.L. Chelaghmia, W. Drissi, C. Boukharouba, S. Abdi, M. Nacef, A.M. Affoune, M. Pontié, A novel and ultrasensitive non-enzymatic electrochemical glucose sensor in real human blood samples based on facile one-step electrochemical synthesis of nickel hydroxides nanoparticles onto a three-dimensional Inconel 625 foam. J. Appl. Electrochem. 53, 315–329 (2023)

    CAS  Google Scholar 

  29. A. Singh, A. Sharma, A.K. Sundramoorthy, S. Arya, Synthesis and characterization of wearable cuprous oxide/conductive fabric enabled non-enzymatic electrochemical sensing of glucose. Ionics. 29, 2501–2513 (2023)

    CAS  Google Scholar 

  30. S. Ramesh, K. Karuppasamy, Y. Haldorai, A. Sivasamy, H.-S. Kim, H.S. Kim, Hexagonal nanostructured cobalt oxide@ nitrogen doped multiwalled carbon nanotubes/polypyyrole composite for supercapacitor and electrochemical glucose sensor. Colloids Surf., B 205, 111840 (2021)

    CAS  Google Scholar 

  31. M. Bilal, Z.U. Rehman, J. Hou, S. Ali, S. Ullah, J. Ahmad, 2 - Metal oxide–carbon composite: synthesis and properties by using conventional enabling technologies, in: M.A. Chaudhry, R. Hussain, F.K. Butt (Eds.) Metal Oxide-Carbon Hybrid Materials, Elsevier2022, pp. 25–60

  32. N. Duraisamy, A. Numan, K. Ramesh, K.-H. Choi, S. Ramesh, Investigation on structural and electrochemical properties of binder free nanostructured nickel oxide thin film. Mater. Lett. 161, 694–697 (2015)

    CAS  Google Scholar 

  33. R. Kumar, K. Singh, P. Kumar, A. Kaur, Highly porous activated carbon prepared from the bio-waste of yellow mustard seed for high-capacity supercapacitor applications. Mater. Chem. Phys. 304, 127869 (2023)

    CAS  Google Scholar 

  34. N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta. 91, 246–252 (2013)

    CAS  Google Scholar 

  35. K.D. Ikkurthi, S.S. Rao, M. Jagadeesh, A.E. Reddy, T. Anitha, H.-J. Kim, Synthesis of nanostructured metal sulfides via a hydrothermal method and their use as an electrode material for supercapacitors. New J. Chem. 42, 19183–19192 (2018)

    CAS  Google Scholar 

  36. G. He, M. Qiao, W. Li, Y. Lu, T. Zhao, R. Zou, B. Li, J.A. Darr, J. Hu, M.M. Titirici, S, N-Co‐doped graphene‐nickel cobalt sulfide aerogel: improved energy storage and electrocatalytic performance. Adv. Sci. 4, 1600214 (2017)

    Google Scholar 

  37. I. Hussain, D. Mohapatra, G. Dhakal, C. Lamiel, S.G. Mohamed, M.S. Sayed, Y.R. Lee, J. Lee, M. Lee, J.-J. Shim, Growth of 2D nanoflakes from 1D long leaf arrays: Electrochemical influence of copper and nickel co-substituted cobalt oxide. J. Energy Storage. 32, 101871 (2020)

    Google Scholar 

  38. M.A. Mumtaz, A.M. Afzal, M.W. Iqbal, A.A. Ifseisi, S. Mumtaz, M. Imran, M. Usman, Z. Hussain, M.H. Waris, P. Lamichhane, Enhancing the charge transfer and redox characteristics in energy storage devices with a layered ZnNbS@graphene nanocomposite electrode material for biomedical application. Diam. Relat. Mater. 140, 110519 (2023)

    ADS  CAS  Google Scholar 

  39. M. Imran, M.H. Waris, R. Khan, A.M. Afzal, M.W. Iqbal, M.A. Mumtaz, A.A. Ghfar, A. Ali, S. Mumtaz, Z. Hussain, High-performance energy storage hybrid supercapacitor device based on NiCoS@CNT@graphene composite electrode material. Phys. Scr. 98, 115981 (2023)

    ADS  Google Scholar 

  40. A.U. Rehman, A.M. Afzal, M.W. Iqbal, M. Ali, S. Mohammad Wabaidur, E.A. Al-Ammar, M. Imran, S. Mumtaz, E. Ha Choi, N. Muzaffar, Synergetic and Anomalous Effect of CNTs in the sulphide-based Binary Composite for an Extraordinary and Asymmetric Supercapacitor Device, The Canadian Journal of Chemical Engineering, n/a

  41. W. Zheng, B. Han, E. Siyu, Y. Sun, X. Li, Y. Cai, Y.-. Zhang, Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchem. J. 157, 105010 (2020)

    CAS  Google Scholar 

  42. J. Tang, L. Wei, S. He, J. Li, D. Nan, L. Ma, W. Shen, F. Kang, R. Lv, Z. Huang, A highly sensitive electrochemical glucose sensor based on room temperature exfoliated graphite-derived film decorated with dendritic copper. Materials. 14, 5067 (2021)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. G. Das, T.Q.N. Tran, H.H. Yoon, Spherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor. Int. J. Nanomed. 10, 165–178 (2015)

    CAS  Google Scholar 

  44. F. Doroftei, T. Pinteala, A. Arvinte, Enhanced stability of a prussian blue/sol-gel composite for electrochemical determination of hydrogen peroxide. Microchim. Acta. 181, 111–120 (2014)

    CAS  Google Scholar 

  45. T. Shimomura, T. Sumiya, M. Ono, T. Ito, T.-. Hanaoka, Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal. Chim. Acta. 714, 114–120 (2012)

    CAS  PubMed  Google Scholar 

  46. J. Yang, W.-D. Zhang, S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens. Bioelectron. 26, 279–284 (2010)

    CAS  PubMed  Google Scholar 

  47. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS nano. 6, 3206–3213 (2012)

    CAS  PubMed  Google Scholar 

  48. M. Li, C. Han, Y. Zhang, X. Bo, L. Guo, Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors. Anal. Chim. Acta. 861, 25–35 (2015)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSP2023R441), King Saud University, Riyadh, Saudi Arabia.

Funding

This work was funded by the Researchers Supporting Project Number (RSP2023R441), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MI, KQ, and AMA worked on experiment, data collection, analysis, and interpretation of results. MI, KQ, and AMA performed the calculation and write the manuscript. MI, KQ, AMA, MWI, SM, SAM, MAH, SS, WF, and MZA helped during the calculation process and reviewed the manuscript.

Corresponding authors

Correspondence to Amir Muhammad Afzal or Zubair Ahmad.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest. The submitted work should be original and should not have been published elsewhere in any form or language.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Qasam, K., Safdar, S. et al. Hydrothermally synthesized CuNiS@CNTs composite electrode material for hybrid supercapacitors and non-enzymatic electrochemical glucose sensor. J Mater Sci: Mater Electron 35, 441 (2024). https://doi.org/10.1007/s10854-024-12197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12197-0

Navigation