Skip to main content
Log in

Investigation of organotin (IV) thiosemicarbazones precursors for synthesizing nanoscaled tin sulfide materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A sequence of organotin (IV) thiosemicarbazone addition of the type of RnSnCl4-n.mLH (1–14) were formed by the reactions of R2SnCl2 with ligands (LH), carvone thiosemicarbazone, C11H17N3S and carvone ethylthiosemicarbazone, C13H21N3S in anhydrous ethanol [where R = CH3, C4H9 or C6H5; n = 2–3 and m = 1–2]. Characterization of all the compounds is done by FT-IR (Fourier-Transform Infrared Spectroscopy), 1H, 13C, 119Sn NMR (Nuclear Magnetic Resonance) and FAB (Fast Atom Bombardment) mass studies. In the solution state, 119Sn NMR investigations indicate a monodentate method of ligand attachment with the core tin atom through the sulphur atom. TGA(Thermogravimetric Analysis) of (C4H9)2SnCl2.2C11H17N3S and (C6H5)2SnCl2.2C13H21N3S depicts big thermal events. Transformations of (C4H9)2SnCl2.2C11H17N3S and (C6H5)2SnCl2.2C13H21N3S to pure tin sulfide (SnS(i) and SnS(ii), correspondingly have been done using solvothermal technique. Images of SEM for (i) and (ii) represents plate-like morphologies of the crystallites and powder XRD(X-Ray Diffraction) of generated tin sulfides suggested formation of orthorhombic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Kurbatova, H. Khlyap, Renew. Sustain. Energy Rev. 52, 217 (2015)

    Article  Google Scholar 

  2. B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Sol. Energy Mater. Sol. Cells. 79, 57 (2003)

    Article  CAS  Google Scholar 

  3. M. Kaur, P. Kumar, H.S. Ghotra, Int. J. Hydrogen Energy. 49, 1095 (2024)

    Article  CAS  Google Scholar 

  4. A. Yago, S. Sasagawa, Y. Akaki, S. Nakamura, H. Oomae, H. Katagiri, H. Araki, Phys. Status Solidi C 14, 1600194 (2017)

    Article  Google Scholar 

  5. D. Cabrera-German, J.A. García-Valenzuela, M. Cota-Leal, M. Martínez-Gil, R. Aceves, M. Sotelo-Lerma, Mater. Sci. Semicond. Process. 89, 131 (2019)

    Article  CAS  Google Scholar 

  6. B.P. Reddy, M.C. Sekhar, S.V.P. Vattikuti, Y. Suh, S.H. Park, Mater. Res. Bull. 103, 13 (2018)

    Article  CAS  Google Scholar 

  7. W. Leone, (2012)

  8. M.K. Atal, R. Sharma, A. Saini, V. Dhayal, M. Nagar, J. Solgel Sci. Technol. 79, 114 (2016)

    Article  CAS  Google Scholar 

  9. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Chem. Mater. 25, 4908 (2013)

    Article  CAS  Google Scholar 

  10. J. Jing, M. Cao, C. Wu, J. Huang, J. Lai, Y. Sun, L. Wang, Y. Shen, J. Alloys Compd. 726, 720 (2017)

    Article  CAS  Google Scholar 

  11. M. Cruz, J. Morales, J.P. Espinos, J. Sanz, J. Solid State Chem. 175, 359 (2003)

    Article  CAS  Google Scholar 

  12. P. Tripathi, A. Kumar, P.K. Bankar, K. Singh, B.K. Gupta, P. Tripathi, A. Kumar, P.K. Bankar, K. Singh, B. Kumar Gupta, Crystals 2023, Vol. 13, Page 1131 13, 1131 (2023)

  13. N. Ali, S.T. Hussain, M.A. Iqbal, K. Hutching, D. Lane, Optik (Stuttg). 124, 4746 (2013)

    Article  CAS  Google Scholar 

  14. H. Ben Haj Salah, H. Bouzouita, B. Rezig, Thin Solid Films. 480–481, 439 (2005)

    Article  Google Scholar 

  15. S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, J. Semicond. 37, 053001 (2016)

    Article  Google Scholar 

  16. N. Lee, G. Lee, H. Choi, H. Park, Y. Choi, K. Kim, Y. Choi, J.W. Kim, H. Yuk, O. Sul, S.B. Lee, H. Jeon, Appl. Surf. Sci. 496, 143689 (2019)

    Article  CAS  Google Scholar 

  17. P.G. Harrison, S.R. Stobart, Inorganica Chim. Acta. 7, 306 (1973)

    Article  CAS  Google Scholar 

  18. G. Barone, T. Chaplin, T.G. Hibbert, A.T. Kana, M.F. Mahon, K.C. Molloy, I.D. Worsley, I.P. Parkin, L.S. Price, J. Chem. Soc., Dalton Trans. 1085 (2002)

  19. P. Kevin, D.J. Lewis, J. Raftery, M. Azad, Malik, P. O’Brien, J. Cryst. Growth. 415, 93 (2015)

    Article  CAS  Google Scholar 

  20. I.Y. Ahmet, M.S. Hill, A.L. Johnson, L.M. Peter, Chem. Mater. 27, 7680 (2015)

    Article  CAS  Google Scholar 

  21. K.C. Mishra, K.H. Johnson, P.C. Schmidt, Phys. Rev. B 51, 13972 (1995)

    Article  CAS  Google Scholar 

  22. J.R. Caldwell, H.V. Moyer, Industrial Eng. Chem. - Anal. Ed. 7, 38 (1935)

    Article  CAS  Google Scholar 

  23. P. Sáez-Plaza, T. Michałowski, M.J. Navas, A.G. Asuero, S. Wybraniec, https://doi.org/10.1080/10408347.2012.751786 43, 178 (2013)

  24. A. Choudhary, R. Sharma, M. Nagar, M. Mohsin, https://doi.org/10.3109/14756366.2010.518966 26, 394 (2011)

  25. P. Sonawane, A. Kumbhar, S. Padhye, R.J. Butcher, Transition Met. Chem. 19, 277 (1994)

    Article  CAS  Google Scholar 

  26. J.S. Casas, M.V. Castao, M.C. Cifuentes, A. Sánchez, J. Sordo, Polyhedron. 21, 1651 (2002)

    Article  CAS  Google Scholar 

  27. H. Ünver, B. Boyacıoğlu, C.T. Zeyrek, M. Yıldız, N. Demir, N. Yıldırım, O. Karaosmanoğlu, H. Sivas, A. Elmalı, J. Mol. Struct. 1125, 162 (2016)

    Article  Google Scholar 

  28. C. Maiehle, A. Castineiras, R. Carballo, H. Gebremedhin, M.A. Lockwood, C.E. Ooms, T.J. Romaek, D.X. West, Transition Met. Chem. 20, 233 (1995)

    Google Scholar 

  29. N.K. Singh, A. Srivastava, A. Sodhi, P. Ranjan, Transition Met. Chem. 25, 133 (2000)

    Article  CAS  Google Scholar 

  30. A. Růžička, R. Jambor, I. Císařová, J. Holeček, Chem. – Eur. J. 9, 2411 (2003)

    Article  PubMed  Google Scholar 

  31. Z.H. Fard, C. Müller, T. Harmening, R. Pöttgen, S. Dehnen, Angew. Chem. Int. Ed. 48, 4441 (2009)

    Article  CAS  Google Scholar 

  32. G.F. Hewitson, (1980)

  33. N. Masciocchi, C. Pettinari, R. Pettinari, C. Di Nicola, A.F. Albisetti, Inorganica Chim. Acta. 363, 3733 (2010)

    Article  CAS  Google Scholar 

  34. T. Amutha, M. Rameshbabu, S. Muthupandi, K. Prabha, Mater. Today Proc. 49, 2624 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Veena Dhayal is thankful to SERB, New Delhi for funding this work (TAR/2020/000233). We are also thankful to SAIF and CAF labs, Manipal University Jaipur for carrying out all the analysis.

Funding

SERB, New Delhi for funding this work (TAR/2020/000233).

Author information

Authors and Affiliations

Authors

Contributions

Ishita Chopra-Paper writing and editing. Renu Sharma -Particles synthesis. Mukesh Kumar Atal-Rough draft of paper. Dalip Singh Shekhawat – Review of rough draft. Veena Dhayal -Review and final draft.

Corresponding author

Correspondence to Veena Dhayal.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, I., Sharma, R., Atal, M.K. et al. Investigation of organotin (IV) thiosemicarbazones precursors for synthesizing nanoscaled tin sulfide materials. J Mater Sci: Mater Electron 35, 439 (2024). https://doi.org/10.1007/s10854-024-12180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12180-9

Navigation