Skip to main content
Log in

Improvement of electrochromic properties of NiO film doped with ZnO prepared by magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel oxide, as an anode electrochromic material, has the advantages of a large color modulation range, good cycle life and strong ion storage capacity, and low raw material price, so it is considered to have the potential for large-scale commercial application. In this paper, the electrochromic properties of the ZnO-doped NiO film prepared via magnetron sputtering technology were studied. Moreover, the content of ZnO in NiO films can be controlled by the adjustable ZnO target’s sputtering power. The doping of ZnO augmented the film crystallinity and the contact area between the film and the electrolyte, thereby improving electrochromic properties. Compared with pure NiO film, the NiO film doped with ZnO at a power of 40 W (the abbreviation is ZnO-40) markedly promotes the migration of Li+, the film’s cycle stability, and electrochromic properties. At the 20th cycle, the optical contrast of the ZnO-40 film was 45.27%, the coloration efficiency was 32.53 cm2/C, the coloration time was 3.1 s, and the bleaching time was 1.1 s. At the 100th cycle, the optical contrast was 43.66%, the coloration efficiency was 28.79 cm2/C, and the reversibility was 99.59%. After 1000 cycles, the optical contrast could steadily reach 42.83%, the coloration efficiency was 60.38cm2/C, and the reversibility was 98.12%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Huang, L. Lei, J. Zhu, Y. Yu, Achieving High Current Density of Perovskite Solar cells by modulating the dominated facets of room-temperature DC Magnetron sputtered TiO2 Electron extraction layer. ACS Appl. Mater. Interfaces. 9, 2016–2022 (2017). https://doi.org/10.1021/acsami.6b14040

    Article  CAS  PubMed  Google Scholar 

  2. F. Lin, D. Nordlund, T.C. Weng, R.G. Moore, Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. Interfaces. 05, 301–309 (2013). https://doi.org/10.1021/am302097b

    Article  CAS  Google Scholar 

  3. D.R. Rosseinsky, R.J. Morter, Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783–793 (2001). https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D

    Article  CAS  Google Scholar 

  4. X.L. Zhong, X.Q. Liu, X.G. Diao, Electrochromic devices based on Tungsten Oxide and Nickel Oxide: a review. J. Inorg. Mater. 36, 128–139 (2021). https://doi.org/10.15541/jim20200488

    Article  Google Scholar 

  5. S. Hou, A.I. Gavrilyuk, J. Zhao, H. Geng, Controllable crystallinity of nickel oxide film with enhanced electrochromic properties. Appl. Surf. Sci. 451, 104–111 (2018). https://doi.org/10.1016/j.apsusc.2018.04.206

    Article  ADS  CAS  Google Scholar 

  6. D. Dong, W. Wang, A. Barnabé, L. Presmanes, Enhanced electrochromism in short wavelengths for NiO:(Li, mg) films in full inorganic device ITO/NiO:(Li, mg)/Ta2O5/WO3/ITO. Electrochim. Acta. 263, 277–285 (2018). https://doi.org/10.1016/j.electacta.2018.01.049

    Article  CAS  Google Scholar 

  7. R. Wang, H. Lin, H.B. Zhu, M.X. Wan, Preparation, investigation and application of nickel oxide thin films in flexible all-thin-film electrochromic devices: from material to device. J. Alloy Compd. 898, 162879 (2022). https://doi.org/10.1016/j.jallcom.2021.162879

    Article  CAS  Google Scholar 

  8. Y.C. He, T.Z. Li, X.L. Zhong, M.A. Zhou, Lattice and electronic structure variations in critical lithium doped nickel oxide thin film for superior anode electrochromism. Electrochim. Acta. 316, 143–151 (2019). https://doi.org/10.1016/j.electacta.2019.05.112

    Article  CAS  Google Scholar 

  9. X. Zhang, W.J. Li, L.B. Wang, X. Chen, Reflective property of Inorganic Electrochromic materials. J. Inorg. Mater. 36, 451–460 (2021). https://doi.org/10.15541/jim20200465

    Article  Google Scholar 

  10. M. Fakharpour, M.H.K. Tafti, Temperature and substrate effect on the electrical and structural properties of NiO columnar nanostructure. Appl. Phys. A-Mater. 129, 234 (2023). https://doi.org/10.1007/s00339-023-06454-y

    Article  ADS  CAS  Google Scholar 

  11. V. Bayzi Isfahani, M.M. Silva, Fundamentals and advances of Electrochromic systems: a review. Adv. Eng. Mater. 23, 2100567 (2021). https://doi.org/10.1002/adem.202100567

    Article  Google Scholar 

  12. D. Dong, W. Wang, G. Dong, F. Zhang, Electrochromic properties and performance of NiOx films and their corresponding all-thin-film flexible devices preparedby reactive DC magnetron sputtering. Appl. Surf. Sci. 383, 49–56 (2016). https://doi.org/10.1016/j.apsusc.2016.04.154

    Article  ADS  CAS  Google Scholar 

  13. D. Zhou, D. Xie, X. Xia, X. Wang, All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications. Sci. China Chem. 60, 3–12 (2016). https://doi.org/10.1007/s11426-016-0279-3

    Article  CAS  Google Scholar 

  14. S.H. Lee, S.J. Lee, R. Kim, H.-W. Kang, Durability-enhanced monolithic inorganic electrochromic devices with tantalum-doped nickel oxide as a counter electrode. Sol Energ. Mat. Sol C 234, 111435 (2022). https://doi.org/10.1016/j.solmat.2021.111435

    Article  CAS  Google Scholar 

  15. M.Y. Pan, Q. He, J.-. Liu, K. Du, A double network hydrogel electrolyte-based electrochromic device for enhanced electrochromic performance and lower power consumption. Dyes Pigm. 212, 111126 (2023). https://doi.org/10.1016/j.dyepig.2023.111126

    Article  CAS  Google Scholar 

  16. Y. Zhao, X. Zhang, X. Chen, W. Li, Preparation of Sn-NiO films and all-solid-state devices with enhanced electrochromic properties by magnetron sputtering method. Electrochim. Acta. 367, 137457 (2021). https://doi.org/10.1016/j.electacta.2020.137457

    Article  CAS  Google Scholar 

  17. K. Zhou, Z. Qi, B. Zhao, S. Lu, The influence of crystallinity on the electrochromic properties and durability of NiO thin films. Surf. Interfaces. 6, 91–97 (2017). https://doi.org/10.1016/j.surfin.2016.12.004

    Article  CAS  Google Scholar 

  18. F. Şenaslan, M. Taşdemir, A. Çelik, Effect of working pressure and post-annealing on structural, optical and electrical properties of p-type NiO thin films produced by RF magnetron sputtering technique. Appl. Phys. A-Mater. 127, 739 (2021). https://doi.org/10.1007/s00339-021-04901-2

    Article  CAS  Google Scholar 

  19. M.A. Green, The Passivated Emitter and Rear Cell (PERC): from conception to mass production. Sol Energ. Mat. Sol C 143, 190–197 (2015). https://doi.org/10.1016/j.solmat.2015.06.055

    Article  CAS  Google Scholar 

  20. M.S. Abdel-wahab, H.K. El Emam, W.M.A. El, Rouby, Sputtered Ag-doped NiO thin films: structural, optical, and electrocatalytic activity toward methanol oxidation. J. Mater. Sci-Mater El. 34, 1637 (2023). https://doi.org/10.1007/s10854-023-11029-x

    Article  CAS  Google Scholar 

  21. J.Y. Chang, Y.C. Chen, C.M. Wang, Y.W. Chen, Electrochromic properties of Li- Doped NiO films prepared by RF Magnetron Sputtering. Coatings. 10, 87 (2020). https://doi.org/10.3390/coatings10010087

    Article  CAS  Google Scholar 

  22. Q. Huang, Q. Zhang, Y. Xiao, Y. He, Improved electrochromic performance of NiO-based thin films by lithium and tantalum co-doping. J. Alloy Compd. 747, 416–422 (2018). https://doi.org/10.1016/j.jallcom.2018.02.232

    Article  CAS  Google Scholar 

  23. J. Varghese, N.R. Aswathy, S.D. Saji, R. Vinodkumar, Structural and optical modification of ZnO:Al thin films by molybdenum co-doping and the origin of green emission. 2nd International Conference on Condensed Matter and Applied Physics (Icc 2017) 1953, 030079 (2018). https://doi.org/10.1063/1.5032414

  24. T. Maruyama, S. Arai, The electrochromic properties of nickel oxide thin films prepared by chemical vapor deposition. Sol Energ. Mat. Sol. Cells 30, 257–262 (1993). https://doi.org/10.1016/0927-0248(93)90145-S

    Article  CAS  Google Scholar 

  25. Y.E. Firat, Influence of current density on Al: NiO thin films via electrochemical deposition: Semiconducting and electrochromic properties. Mat. Sci. Semicond. Proc. 109, 104958 (2020). https://doi.org/10.1016/j.mssp.2020.104958

    Article  CAS  Google Scholar 

  26. K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, Influence of Zn2+ ions incorporation on the magnetic and pseudo capacitance behaviors of NiO nanoparticles. Mat. Sci. Semicond. Proc. 27, 846–853 (2014). https://doi.org/10.1016/j.mssp.2014.08.025

    Article  CAS  Google Scholar 

  27. S.H. Park, J.W. Lim, S.J. Yoo, I.Y. Cha, The improving electrochromic performance of nickel oxide film using aqueous N, N-dimethylaminoethanol solution. Sol Energ. Mat. Sol C 99, 31–37 (2012). https://doi.org/10.1016/j.solmat.2011.06.023

    Article  CAS  Google Scholar 

  28. B. Hao, J. Guo, L. Zhang, H. Ma, Magnetron sputtered TiO2/CuO heterojunction thin films for efficient photocatalysis of rhodamine B. J. Alloy Compd. 903, 163851 (2022). https://doi.org/10.1016/j.jallcom.2022.163851

    Article  CAS  Google Scholar 

  29. C. Wu, Y. Yang, W.W. Feng, W.J. Song, Towards superior nickel oxide electrochromic films using Si and Li co-doping and rapid thermal annealing. J. Alloy Compd. 862, 158665 (2021). https://doi.org/10.1016/j.jallcom.2021.158665

    Article  CAS  Google Scholar 

  30. F. Wang, J. Jia, W. Zhao, L. Zhang, Preparation and electrochromic properties of NiO and ZnO-doped NiO thin films. Mat. Sci. Semicond. Proc. 151, 106986 (2022). https://doi.org/10.1016/j.mssp.2022.106986

    Article  CAS  Google Scholar 

  31. F. Abrinaei, M.T. Hosseinnejad, M. Shirazi, F. Shahgoli, Characterisation of nanostructured SnO2 thin films synthesised by magnetron sputtering and application in a carbon monoxide gas sensor. J. Chem. Res. 40, 436–441 (2016). https://doi.org/10.3184/174751916x14656576466887

    Article  CAS  Google Scholar 

  32. X. Yang, J. Guo, Y. Zhang, W. Liu, Hole-selective NiO: Cu contact for NiO/Si heterojunction solar cells. J. Alloy Compd. 747, 563–570 (2018). https://doi.org/10.1016/j.jallcom.2018.03.067

    Article  CAS  Google Scholar 

  33. Q. Liu, G. Dong, Y. Xiao, M.-P. Delplancke-Ogletree, Electrolytes-relevant cyclic durability of nickel oxide thin films as an ion-storage layer in an all-solid-state complementary electrochromic device. Sol Energ. Mat. Sol C 157, 844–852 (2016). https://doi.org/10.1016/j.solmat.2016.07.022

    Article  CAS  Google Scholar 

  34. I. Valyukh, S. Green, H. Arwin, G.A. Niklasson, Spectroscopic ellipsometry characterization of electrochromic tungsten oxide and nickel oxide thin films made by sputter deposition. Sol Energ. Mat. Sol C 94, 724–732 (2010). https://doi.org/10.1016/j.solmat.2009.12.011

    Article  CAS  Google Scholar 

  35. K.S. Usha, R. Sivakumar, C. Sanjeeviraja, V. Sathe, Improved electrochromic performance of a radio frequency magnetron sputtered NiO thin film with high optical switching speed. Rsc Adv. 6, 79668–79680 (2016). https://doi.org/10.1039/c5ra27099e

    Article  ADS  CAS  Google Scholar 

  36. Y. Xiao, G. Dong, J. Guo, Q. Liu, Thickness dependent surface roughness of sputtered Li2.5TaOx ion conductor and its effect on electro-optical performance of inorganic monolithic electrochromic device. Sol Energ. Mat. Sol C 179, 319–327 (2018). https://doi.org/10.1016/j.solmat.2017.12.027

    Article  CAS  Google Scholar 

  37. T. Potlog, L. Ghimpu, V. Suman, A. Pantazi, Influence of RF sputtering power and thickness on structural and optical properties of NiO thin films. Mater. Res. Express. 6, 096440 (2019). https://doi.org/10.1088/2053-1591/ab317d

    Article  ADS  CAS  Google Scholar 

  38. V. Bayzi Isfahani, A. Arab, J. Horta Belo, J. Pedro Araujo, Comparison of Physical/Chemical properties of prussian Blue Thin films prepared by different pulse and DC Electrodeposition methods. Materials. 15, 8857 (2022). https://doi.org/10.3390/ma15248857

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. V.B. Isfahani, N. Memarian, H.R. Dizaji, A. Arab, The physical and electrochromic properties of prussian blue thin films electrodeposited on ITO electrodes. Electrochim. Acta. 304, 282–291 (2019). https://doi.org/10.1016/j.electacta.2019.02.120

    Article  CAS  Google Scholar 

  40. Y.E. Firat, A. Peksoz, Efficiency enhancement of electrochromic performance in NiO thin film via Cu doping for energy-saving potential. Electrochim. Acta. 295, 645–654 (2018). https://doi.org/10.1016/j.electacta.2018.10.166

    Article  CAS  Google Scholar 

  41. J. Qiu, Z. Chen, T. Zhao, Z. Chen, Electrochromic properties of NiOx films deposited by DC Magnetron Sputtering. J. Nanosci. Nanotechno. 18, 4222–4229 (2018). https://doi.org/10.1166/jnn.2018.15263

    Article  CAS  Google Scholar 

  42. C.B. Amara, H. Hammami, S. Fakhfakh, A. Kallel, Investigation of effects of ZrO2 Doping on Electrical properties of Soda Lime Silicate glasses using Dielectric Spectroscopy. J. Electron. Mater. 50, 5915–5924 (2021). https://doi.org/10.1007/s11664-021-09129-7

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China (Grant No. 51904272).

Author information

Authors and Affiliations

Authors

Contributions

Fei Wang: Formal analysis, Methodology, Writing—original draft, Writing—review & editing. Weike Zhang: Investigation, Writing—review & editing. Jia Jia: Data curation, Formal analysis, Writing—original draft, Writing—review & editing. Yunlong Chen: Investigation. Zhixin Chen: Visualization. Zeshi Wang: Visualization. Lan Zhang: Writing—review & editing. Huizhong Ma: Writing—review & editing.

Corresponding author

Correspondence to Jia Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhang, W., Jia, J. et al. Improvement of electrochromic properties of NiO film doped with ZnO prepared by magnetron sputtering. J Mater Sci: Mater Electron 35, 455 (2024). https://doi.org/10.1007/s10854-024-12172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12172-9

Navigation