Skip to main content
Log in

Study of structural and dielectric properties of blended poly (vinylidene fluoride) and poly(methyl methacrylate) multifunctional nanocomposites doped with nano-SnO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric constant of polymers is low (low-ε′). A high-ε′ multifunctional nanomaterial must be added to the polymer in order to create a polymer composite with high values of the dielectric constant of the polymer blend. Composites prepared from such high-ε′ polymers are extremely beneficial for many energy storage devices and electrical devices such as transducers, piezo-sensors, hydrophones, microstrip antennas (used in artificial satellites for data detection) etc. In order to achieve the demands and needs of today for the society we prepared and design thin films using PMMA which is blended with poly vinylidene fluoride (PVDF) with high-ε′ value and further mixed with tin oxide (SnO2) nanoparticles in different weight ratios varies from 0.5 to 4 wt% categorizing sample as SP1—0.5 wt%, SP2—1wt%, SP3—2wt% and SP4—4wt% and these samples are synthesized by casting techniques using magnetic stirrer. The effect of varying SnO2 content on structure, chain segmental motion and dielectric properties of PVDF/PMMA blend have been investigated using X-ray diffraction (XRD), Infrared spectroscopy using FTIR and Impedance analyzer techniques. The structural characterizations showed that the SnO2 nanoparticles are immiscibly dispersed in PVDF/PMMA blend matrix, leading to a noticeable rise in the values of dielectric constant and electrical conductivity at constant frequency. On increasing the frequency at constant wt% of SnO2, a decrease in dielectric constant was observed. Such behavior in a lower frequency range can be attributed to the interfacial polarization effect (IPF) and remarkable increase in the molecular polarization at high frequencies. At high wt% of SnO2 in the polymer blend, nonlinear behavioral changes occur in the chain segmental dynamics, reflected by the trends of dc electrical conductivity. The electric modulus spectra were used to analyze the relaxation processes associated with the M–W–S mechanism and chain segmental motion in the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available on request.

References

  1. D. Tan, P. Irwin, Sikalidis, C. (ed.), InTech: Crotia. https://doi.org/10.5772/23012 (2011)

  2. V. Mittal, Wiley-VCH Verlag GmbH & Co. KgaA. https://doi.org/10.1002/9783527654505(2012)

  3. K. Seham, A. Abdel, F. Ashraf, El-Sherif, Md. F. Kandeel, S. Ahmed, A. Rahman, https://doi.org/10.1002/pssa.202100036

  4. N. J. Keith, Springer Science + Business Media, LLC. https://doi.org/10.1007/978-1-4419-1591-7 (2010)

  5. D. Farah, S. Kriti, B. Minal, J. Ankur, J. Compos. Sci. 6, 355 (2022). https://doi.org/10.3390/jcs6120355

    Article  CAS  Google Scholar 

  6. M. Bafna, N. Sain, A. Khandelwal, F. Deeba, A.K. Gupta, Mater. Today 66, 3481–3486 (2022)

    CAS  Google Scholar 

  7. J.W. Zha, M.S. Zheng, B. Fan, Z.M. Dang, Nano Energy 89, 106438 (2021)

    Article  CAS  Google Scholar 

  8. B.S.R. Reddy, InTech: Croatia. (2011)

  9. M. Idrees, S. Batool, Q. Zhuang, J. Kong, I. Seok, J. Zhang, H. Liu, V. Murugadoss, Q. Gao, Z. Guo, Ceram. Int. 45, 10572–10580 (2019)

    Article  CAS  Google Scholar 

  10. M.A. Dalal, M. Madani, M.M. Ghobashy, Asian J. Sci. Res. 13, 244–252 (2020)

    Article  Google Scholar 

  11. A.K. Gupta, M. Bafna, S. Srivastava, R.K. Khanna, Y.K. Vijay, Environ. Sci. Pollut. Res. 28(4), 3880–3887 (2021)

    Article  CAS  Google Scholar 

  12. F. Carlos, Zinola, E. Maria, Martins, E.P. Tejera, N.P. Neves Jr., Hindawi Publishing Corporation: International Journal of Electrochemistry, Article ID 874687 (2012). https://doi.org/10.1155/2012/874687

  13. K. Deshmukh, M.B. Ahamed, R. Rajendra, R. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. Almaadeed, A.R. Polu, K. Chidambaram, J. Electr. Mater. 46(4), 2406 (2017). https://doi.org/10.1007/s11664-017-5304-4

    Article  CAS  Google Scholar 

  14. R.J. Sengwa, S. Choudhary, Adv. Mater. Proc. 2(4), 280–287 (2017). https://doi.org/10.5185/amp.2017/415

    Article  Google Scholar 

  15. K. Seham, A. Abdel, S. Ahmed, A. Rahman, J. Nanopart. Res. 22, 267 (2020)

    Article  Google Scholar 

  16. N. Garg, M. Bafna, Mater. Today 30, 78–83 (2020)

    CAS  Google Scholar 

  17. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, Polym. Compos. 38, 287 (2017). https://doi.org/10.1002/pc.23586

    Article  CAS  Google Scholar 

  18. F. Deeba, M. Bafna, A. Jain, SGVU Int. J. Environ. Sci. Technol. 8(1), 46–69 (2022)

    Google Scholar 

  19. K. Seham, A. Abdel, I. Anatolli, Beskrovnyi, M. Andrey, Ionov, N. Rais, Mozhchil, S. Ahmed, A. Rahman, Wiley Online Library (2021). https://doi.org/10.1002/pssa.202100138

  20. B. Liang, S. Tang, Q. Jiang, C. Chen, X. Chen, S. Li, X. Yan, Electrochim. Acta 169, 334–341 (2015)

    Article  CAS  Google Scholar 

  21. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Electrochim. Acta 142, 359–370 (2014). https://doi.org/10.1016/j.electacta.2014.07.120

    Article  CAS  Google Scholar 

  22. A. Rahman, Research Square 2024. ISSN 2693–5015,2 (2024). https://doi.org/10.21203/rs.3.rs-2281463/v2

  23. B. Ghule, B.M. Laad, Ukr. J. Phys. 66, 166–177 (2021)

    Article  Google Scholar 

  24. F. Deeba, A.K. Gupta, V. Kulshrestha, M. Bafna, A. Jain, Mater. Today 66, 3547–3552 (2022)

    CAS  Google Scholar 

  25. P. Dhatarwal, S. Choudhary, R.J. Sengwa, Mater. Lett. 273, 127913 (2020)

    Article  CAS  Google Scholar 

  26. N. Guo, S.A. Di-Benedetto, P. Tewari, M.T. Lanagan, M.A. Ratner, T.J. Marks, Chem. Mater. 22, 1567 (2010)

    Article  CAS  Google Scholar 

  27. A.K. Gupta, M. Bafna, A. Agarwal, N. Sain, Mater. Today 38, 1263–1266 (2021)

    CAS  Google Scholar 

  28. M. Suporva, G.S. Martynkova, K. Barabaszova, Sci. Adv. Mater. 3, 1–25 (2011)

    Article  Google Scholar 

  29. F. Deeba, A.K. Gupta, V. Kulshrestha, M. Bafna, A. Jain, J. Mater. Sci. 33(30), 23703–23713 (2022)

    CAS  Google Scholar 

  30. C. John, R.A. Meyers (ed.) (Wiley, Chichester, 2000), pp. 10815–10837

  31. P. Dhatarwal, S. Choudhary, R.J. Sengwa, Mater. Lett. 273127913 (2020)

  32. P. Dhatarwal, S. Choudhary, R.J. Sengwa, Polymer Bulletin, vol. 78 (Springer-VerlagGmbh, Germany, 2021), pp.2357–2373

    Google Scholar 

  33. P.L. Reddy, K. Deshmukh, K. Chidambaram, Md.M.N. Ali, K.K. Sadasivuni, Y.R. Kumar, K.K. Pasha, J. Mater. Sci. 30, 4676 (2019). https://doi.org/10.1007/s10854-019-00761-y

    Article  CAS  Google Scholar 

  34. M.A. Anu, S. Savitha Pillai, Solid State Commun. 341, 114577 (2022). https://doi.org/10.1016/j.ssc.2021.114577

    Article  CAS  Google Scholar 

  35. P. Manivel, S. Ramakrishnan, N.K. Kothurkar, A. Balamurugan, N. Ponpandian, D. Mangalaraj, C. Viswanathan, Mater. Res. Bull. 48(2), 640–645 (2013). https://doi.org/10.1016/j.materresbull.2012.11.033

    Article  CAS  Google Scholar 

  36. P. Martins, A.C. Lopes, S.L. Méndez, Prog. Polym. Sci. 39(4), 683–706 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  37. M.I. Mohammed, Polym. Bull. 79, 2443 (2022). https://doi.org/10.1007/s00289-021-03606-z

    Article  CAS  Google Scholar 

  38. K. Deshmukh, M.B. Ahamed, R. Rajendra, R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, A.R. Polu, D. Ponnamma, M.A.-A. Al Maadeed, K. Chidambaram, J. Mater. Sci. 28, 973–986 (2017)

    CAS  Google Scholar 

  39. P. Dhatarwal, R.J. Sengwa, Mater. Res. Bull. 129, 110901 (2020). https://doi.org/10.1016/j.materresbull.2020.110901

    Article  CAS  Google Scholar 

  40. R. Nie, Y. Li, L. Jia, J. Lei, H. Huang, Z. Li, J. Polym. Sci. Part B 57, 1043 (2019). https://doi.org/10.1002/polb.24858

    Article  CAS  Google Scholar 

  41. J. Joseph, K. Deshmukh, K. Chidambaram, Md. Faisal, E. Selvarajan, K.K. Sadasivuni, M.B. Ahamed, S.K.K. Pasha, J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-0150-6

    Article  Google Scholar 

  42. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Acta Cryst. Sect. B 75(5), 880–886 (2019). https://doi.org/10.1107/S2052520619011314

    Article  CAS  Google Scholar 

  43. C. Shobhna, R.J. Sengwa, Electrochem. Acta. 247, 924–941 (2017)

    Article  Google Scholar 

  44. M.F. Kandeel, S.K. Abdel-Aal, A.F. El-Sherif, H.S. Ayoub, A.S. Abdel-Rahman, IOP Conf. Ser. 610, 012063 (2019). https://doi.org/10.1088/1757-899X/610/1/012063

    Article  CAS  Google Scholar 

  45. M. Bafna, F. Deeba, A.K. Gupta, K. Shrivastava, V. Kulshrestha, A. Jain, Molecules 28, 5722 (2023). https://doi.org/10.3390/molecules28155722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139–17150 (2018). https://doi.org/10.1039/C8RA00794B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. R. Sengwa, P. Dhatarwal, Opt. Mater. 113, 110837 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely thankful to Dr. Shubham, Malviya National Institute of Technology: MREC, Prof. (Dr.) Mirza S. Baig, IIT— Indore, Dr. Balram Tripathi, Department of Physics for providing experimental facilities and technical support to compute the data of my samples with Impedance spectroscopy and its use.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MB; methodology, MB and FD; formal analysis, FD and AKG; investigation, FD and VK; resources, AJ; data curation, FD and KS; writing—original draft preparation, FD; final review and editing, MB and AJ; supervise, AJ The published version of the work has been reviewed and approved by all authors.

Corresponding author

Correspondence to Ankur Jain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bafna, M., Deeba, F., Gupta, A.K. et al. Study of structural and dielectric properties of blended poly (vinylidene fluoride) and poly(methyl methacrylate) multifunctional nanocomposites doped with nano-SnO2. J Mater Sci: Mater Electron 35, 494 (2024). https://doi.org/10.1007/s10854-024-12146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12146-x

Navigation